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Asymptotic laws for tagged-particle motion in glassy systems

M. Fuchs, W. Go¨tze, and M. R. Mayr
Physik Department, Technische Universita¨t München, 85747 Garching, Germany

~Received 31 March 1998!

Within mode-coupling theory for structural relaxation in simple systems, the asymptotic laws and their
leading-asymptotic correction formulas are derived for the motion of a tagged particle near a glass-transition
singularity. These analytic results are compared with numerical ones of the equations of motion evaluated for
a tagged hard sphere moving in a hard-sphere system. It is found that the long-time part of the two-step
relaxation process for the mean-squared displacement can be characterized by thea-relaxation scaling law and
von Schweidler’s power-law decay, while the critical-decay regime is dominated by the corrections to the
leading power-law behavior. For parameters of interest for the interpretations of experimental data, the cor-
rections to the leading asymptotic laws for the non-Gaussian parameter are found to be so large that the leading
asymptotic results are altered qualitatively by the corrections. Results for the non-Gaussian parameter are
shown to follow qualitatively the findings reported in the molecular-dynamics-simulations work by Kob and
Andersen@Phys. Rev. E51, 4626~1995!#. @S1063-651X~98!09609-3#

PACS number~s!: 64.70.Pf, 61.20.Lc
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I. INTRODUCTION

Mode-coupling theory~MCT! for the structural relaxation
of glassy liquids@1,2# has provided explanations for long
known phenomena, such as, for example, the stretchin
the a process, the time-temperature superposition princi
and the von Schweidler law. It has also predicted new p
nomena such as a square-root singularity in the tempera
dependence of the Debye-Waller factor and the critical
cay. For details, the reader is referred to Refs.@3,4# and the
papers quoted there. The universal features of the MCT a
as leading-order results near a bifurcation singularity, wh
was identified as an ideal glass transition—in reality smea
out due to additional relaxation processes. These theore
findings also provided some motivation for a number of e
periments focusing on the evolution of structural relaxat
in the vicinity of the predicted glass-transition singular
~see Refs.@5–17# and the papers quoted there!. In turn, these
experiments sparked off new theoretical developments s
as the derivation and discussion of next-to-leading-or
asymptotic results in the vicinity of the bifurcation singula
ity @18#, and the extension of the theory to liquids consisti
of or containing nonspherical molecules@19,20#. Using the
coherent intermediate scattering function of a hard-sph
system~HSS! as an example, the preceding work@18# illus-
trates how asymptotic corrections explain the deviation fr
the leading-order results, and shows how general prope
of these corrections may be included into a quantitat
analysis of experimental data. Due to the presence of a
tional amplitudes and a new second-order scaling funct
many features of these corrections are different for differ
observables, used for the description of the glassy dynam
Therefore, we intend to extend the previous work to a d
cussion of the conceptually simplest functions characteriz
the dynamics, namely, the density correlator of a tagged
ticle and its special limits, the mean-squared displacem
and the non-Gaussian parameter.

The tagged-particle density correlators can be meas
by a variety of techniques. Neutron scattering from mole
PRE 581063-651X/98/58~3!/3384~16!/$15.00
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lar liquids with an incoherent scattering cross section such
orthoterphenyl@17,21# probes its spectrum. For a glassy co
loidal suspension the correlator has recently been meas
by dynamic light scattering@22#. From measurements of th
incoherent intermediate scattering function for small wa
vectors, one can extract the mean-squared displacement@22–
24# and, in principle, also information about the no
Gaussian parameter. In computer simulations the tagg
particle correlator is a preferred quantity—compared to
coherent density fluctuation function—due to statistical a
vantages. The mean-squared displacement and the
Gaussian parameter can also be directly extracted from c
puter simulation data@11,25#. The reported simulation result
for the non-Gaussian parameter challenged the universal
tures predicted by MCT. Within the accessible simulatio
time window, the non-Gaussian parameter showed no s
of the predictions of a two-step relaxation process nor of
time-temperature superposition principle, even though ot
dynamical quantities such as the intermediate scatte
function, self-intermediate scattering function, and me
squared displacement fitted into the picture for glassy
namics drawn by MCT.

To proceed, equations of motion will be derived for th
mean-squared displacement and the non-Gaussian param
The relaxation kernels in those equations are given by mo
coupling functionals, which require correlators of the dens
and the tagged-particle density as input. For the latter, p
viously derived MCT equations@2# are used. Then an
asymptotic expansion of the solutions will be carried out. A
equations will be solved and studied in quantitative detail
the model system of a tagged hard sphere immersed
HSS. The HSS has already been the subject of a numbe
theoretical investigations, as can be inferred from Re
@18,26# and the papers quoted there. Its importance stem
part from the fact that it is the simplest system for which
glass transition has been detected experimentally@8,9,27#,
thus providing an archetype for quantitative tests of
theory. Comprehensive comparisons between MCT res
for the evolution of structural relaxation and the correspo
3384 © 1998 The American Physical Society
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PRE 58 3385ASYMPTOTIC LAWS FOR TAGGED-PARTICLE MOTION . . .
ing experimental findings obtained by dynamic light scatt
ing for hard-sphere colloids were published in Re
@8,9,28,29#. In the data analysis, two numbers enter as
parameters: a time scalet0 , given by the viscosity of the
solvent, and the critical packing fractionwc . The predicted
value forwc @2# differs from the experimental value by abo
12%. Here, as in any other test of a singularity theory, d
have been studied as a function of the distance«5(w
2wc)/wc from the positionwc of the singularity. The cited
tests have been summarized as follows@30,31#: the leading
asymptotic MCT results account for data within the expe
mental uncertainties for the liquid states («,0) and also for
the glass states («.0). This does not only hold for universa
formulas like the scaling laws. It also holds for the numeri
values predicted for the exponents, the master functions
tering the scaling laws, and for the various wave-vect
dependent amplitudes. Therefore, it seems justified to il
trate our theory for the tagged-particle motion in a HSS. T
cited and tested results for the density dynamics will ente
input taken from the preceding work@18#. But the HSS is
also relevant because its dynamics shares many features
other simple systems, as will again be demonstrated in
paper.

The paper is arranged as follows. After briefly reviewi
the basics of the MCT glass transition~Sec. II! we start by
discussing the properties of the tagged-particle density
relator in Sec. III. Section IV covers the mean-squared d
placement and its asymptotic behavior. The quality of
Gaussian approximation for the self-intermediate scatte
function of the HSS is assessed~Sec. V!, before turning to
the non-Gaussian parameter in Sec. VI. In the conclusion
will summarize our results and suggest how some recent
periments and simulations on single-particle quantities
be interpreted.

II. IDEAL MCT GLASS TRANSITION

The idealized MCT deals with the structural dynam
of simple liquids, consisting ofN particles at positions
rW j , j 51, . . . ,N. A self-consistent treatment of the cage e
fect, which is thought to be the reason for the glass tra
tion, leads to a closed set of integrodifferential equations
the density correlatorFq(t)5^rqW

* (0)rqW(t)&/Sq , i.e., the au-
tocorrelation function of the density fluctuationrqW(t)
5(1/AN)( jexp@iqW•rWj(t)# for wave vectorqW , normalized by
the static structure factorSq5^rqW

* (0)rqW(0)&; ^ & signifies
an average with respect to the canonical ensemble, anq

5uqW u abbreviates a wave-vector modulus. Specializing t
colloid model, the MCT equations of motion read

tqḞq~ t !1Fq~ t !1E
0

t

mq~ t2t8!Ḟq~ t8!dt850. ~1!

They are specified by the timestq5Sq /(D0q2) with D0 de-
noting the single-particle diffusion coefficient. The memo
kernel in this equation is given as a mode-coupling fu
tional mq(t)5Fq„F(t)…, where Fq is determined by the
structure factorSq @2#, which depends smoothly on extern
control parameters such as the densityn.
-
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At a critical densitync the above equations exhibit a b
furcation in the long-time limitsf q5 limt→`Fq(t) of the
density correlators. The bifurcation singularity can be ide
tified with a liquid-glass transition: Atnc , the Debye-Waller
factor f q , also called the form factor, jumps from zero to th
critical from factor f q

c.0. The instability of the glass forn
→nc1 is reflected by a square-root singularity of the Deby
Waller factor: f q5 f q

c1hqAs/(12l)1O(s). Here,s5C«
is called the separation parameter, 0.5<l,1 is the called
exponent parameter, andhq5(12 f q

c)2eq.0 denotes the
critical amplitude. The quantitieseq , l, and the constan
C.0, relatings and the reduced density«5(n2nc /nc , can
be calculated by straightforward formulas from the fun
tional F @3#.

Via a simple transcendental equation, the exponent
rameterl determines two anomalous exponents: the criti
exponenta, 0,a,0.5, and the von Schweidler expone
b, 0,b<1. Furthermorel fixes a constantB.0. There
appears a single timet0 , specifying the scale for the transien
dynamics. The bifurcation dynamics is then ruled by tw
critical time scales, denoted byts and ts8 :

ts5t0 /usud, ts85t0B21/b/usug,

d5
1

2a
, g5

1

2a
1

1

2b
. ~2!

The mathematical relevance of these concepts is evid
from the following limit results @3#. First,
lim t̂→0lims→0$@Fq( t̂ ts)2 f q

c#/Ausu% t̂ a5hq . Thus, near the
transition, the plateau valuef q

c is approached from abov
according to a power law, called critical decay,

Fq~ t !2 f q
c;hq~ t0 /t !a, t0!t!ts . ~3!

Second,

lim
t̃→0

lim
s→02

@Fq~ t̃ ts8 !2 f q
c#/ t̃ b52hq5 lim

t̂→`

lim
s→02

$@Fq~ t̂ ts!

2 f q
c#/Ausu%/ t̂ b.

Near the transition the plateau valuef q
c is left in the liquid

state according to a power law, called von Schweidler dec

Fq~ t !2 f q
c;2hq~ t/ts8 !b, ts!t!ts8 . ~4!

There are two dynamical scaling laws describing the
furcation dynamics near the transition in a leading-ord
asymptotic limit. The first one describes the dynamics o
scale ts : Fq(t)2 f q

c;hqG(t). Here G(t)5(t0 /t)a for
s50, and

G~ t !5Ausug6~ t/ts!, s:0. ~5!

The s-independent master functionsg6 are determined by
l. They describe the crossover from the critical dec
g6( t̂!1)51/t̂ a to arrest in the glass,g1( t̂@1)51/A12l,
or to von Schweidler’s decay in the liquid,g2( t̂@1)
52Bt̂b1B1 /(Bt̂b). The result is obtained by solving th
MCT equations usinguFq(t)2 f q

cu as small parameter. Thi
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is equivalent to writingt5 t̂ ts and then expanding in power
of the small parameterAusu. Pushing the expansion to nex
to-leading order extends the first scaling-law result to

Fq~ t !5 f q
c1hqG~ t !1hq@H~ t !1KqG~ t !21sK̂q#. ~6!

Here two further amplitudesKq andK̂q , and a new function
H(t), appear. The latter obeys scaling lawsH(t)
5k(a)(t0 /t)2a for s50 andH(t)5usuh6(t/ts) for s:0.
All these quantities can be evaluated from the mo
coupling functionalFq as is comprehensively explained

Ref. @18#, where we changed notationK̄̄ to K̂q . The domain
of applicability of expansion~6! is called theb-relaxation
window, and correspondinglyG andts are referred to as the
b correlator andb-relaxation time scale, respectively.

The second scaling law describes the liquid dynamics
scalets8 . It deals with the decay of the correlator from th
plateau to zero, and it is based on the relat
lims→02Fq( t̃ ts8 )5F̃q( t̃ ). Here the s-independent func-

tions F̃q( t̃ ) are the solution of the implicit functional equa
tions

E
0

t̃
@m̃q~ t8!2F̃q~ t8!#dt85E

0

t̃
m̃q~ t̃ 2t8!F̃q~ t8!dt8. ~7!

The kernelm̃q( t̃ )5F q
c
„F̃( t̃ )… is the mode-coupling func

tional at the transition point, and the equation is to be sol
with von Schweidler’s law as an initial condition. Near th
transition within the windowts!t this implies, in leading
order,

Fq~ t !5F̃q~ t/ts8 !. ~8!

This window is referred to as thea regime,ts8 is called the
a-relaxation time scale, and Eq.~8! is the superposition prin
ciple for thea process.

Every theory dealing with the dynamics of a variableA as
a probe of structural relaxation in glassy systems relies on
understanding of the dynamics of density rearrangeme
Hence a microscopic theory will require results forFq(t) as
input. For the following discussion it is therefore necess
to appreciate the concepts and results formulated ab
They were explained and illustrated in Ref.@18# for the HSS.
The quantitative examples of the following discussion sh
also be done for that model. We follow the previous conv
tions by using the particle diameterd as unit of length,d
51, choosing the time unit so that the short-time diffusiv
D05 1

160, and using the packing fractionw5pnd3/6 as the
control parameter. In this case one obtainswc50.516, C
51.54, l50.735, a50.312, b50.583, B50.836, B1
50.431, andt050.425.

III. TAGGED-PARTICLE DENSITY CORRELATOR

A. Equation of motion

The dynamics of a tagged particle is explored by its d
sity correlator Fq

s(t)5^rqW
s* (0)rqW

s(t)&, where rqW
s(t)
-

n

n

d

n
ts.

y
e.

ll
-

-

5exp@iqW•rW(t)#; rW denotes the position of the particle. For
system driven by Brownian dynamics the MCT equation
motion reads

tq
sḞq

s~ t !1Fq
s~ t !1E

0

t

mq
s~ t2t8!Ḟq

s~ t8!dt850, ~9!

with tq
s51/(D0

sq2). HereD0
s is the short-time diffusion co-

efficient of the immersed particle. The memory kern
mq

s(t)5F q
s
„F(t),Fs(t)… is expressed through the mod

coupling functionalF q
s , where not onlyFq

s(t) but also
Fq(t) enter:

F q
s~ f , f s!5

1

~2p!3E nSkck
s2S qW kW

q2 D 2

f kf uqW 2kW u
s

d3k. ~10!

Here cq
s5^rqW

s* (0)rqW(0)&/(nSq) denotes the single-particl
direct correlation function@2#.

To solve Eqs.~9! and~10! numerically, we proceed as in
Ref. @18#: The mode-coupling functional is rewritten in b
polar coordinates by change of variable, and the two rem
ing integrals are approximated by Riemann sums

F q
s~ f , f s!5nD3/~16d3p2! (

k̂51/2

99.5

( 8
p̂51/2

99.5

Sk~ k̂p̂/q̂5!~ k̂21q̂2

2 p̂2!2ck
s2f kf p

s . ~11!

The prime indicates that the sum runs only over those va
p̂ for which k̂, p̂, and q̂ obey the triangle inequality
Thereby, we again obtain a precisely defined tagged-h
sphere-particle model described by 100 coupled integro
ferential equations forFq

s(t) on a grid of 100 equally space

wave numbersq5Dq̂ with q̂5 1
2 , . . . ,991

2 and step size
D50.4.

The substitution of Eq.~11! for the mode-coupling func-
tional ~10! might seem rather crude. However, we ha
checked that the results seldom differ by more than a
percent from those obtained with 300 or 900 grid points
the Riemann sum. Only at small wave numbers do qual
tive changes occur due to bad angle resolution; howe
these do not influence other wave vectors because the m
contributions to the integral in Eq.~10! come from the wave
vectors near the structure-factor-peak position.

In our application to the HSS, the static structure factorSq

and the direct correlation functioncq
s are calculated in the

Percus-Yevick approximation@32#. Assuming short-time dif-
fusion according to Stokes’ law, which entailsD0

s/D0

5d/ds, only two control parameters remain: the packi
fraction w of the host particles and the diameterds of the
tagged particle. All results for the coherent density corre
tors Fq(t) of the HSS, which will be needed in the follow
ing, will be taken from the solution of Eq.~1! discussed in
Ref. @18#.
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B. Critical Lamb-Mö ssbauer factor

The trapping of a tagged particle by its surrounding h
particles manifests itself by a nonvanishing Lam
Mössbauer factorf q

s5 limt→`Fq
s(t). From Eq.~9!, one finds

@2# that f q
s is a solution of

f q
s

12 f q
s

5F q
s~ f , f s!. ~12!

It is distinguished from other solutions of Eq.~12!, say f̃ q
s ,

by the maximum property,f q
s> f̃ q

s @3#. It can be found by
the iteration f q

s5 limn→` f q
s(n) , where f q

s(n11)/(12 f q
s(n11))

5F q
s( f , f s(n)), f q

s(0)51 @33#. Obviously f [0 implies f s

[0, but not vice versa. The spatial Fourier transformf s(r )
of the Lamb-Mössbauer factor is the probability of findin
the particle fort5` at distancer from where it started for
t50. Therefore, a particle cannot be trapped as long as
host particles are in a liquid state. But even when the h
particles are in a glass state, the tagged particle may sti
able to diffuse in the arrested structure. The various scena
arising from Eqs.~12! and ~10! have been discussed befo
~compare Ref.@34# and the papers cited there!.

For a tagged hard sphere of diameterds51.0 the Lamb-
Mössbauer factor jumps from 0 to the critical valuef q

sc.0,
which is shown in Fig. 1, when the packing fractionw passes

FIG. 1. Critical Lamb-Mo¨ssbauer factorf q
sc and amplitudes

hq
s , Kq

s , and K̄q
s , obtained from Eqs.~12!, ~15!, and ~17!, for a

tagged hard-sphere particle of diameterds51.0 immersed in a hard
sphere liquid. The solid lines are the Gaussian approximations,
~31!. The arrows indicate the wave numbersq053.4, q1

57.0, q2510.6, andq3517.4. The dotted line in the upper panel
one tenth of the structure factor at the critical point~compare Fig. 3
in Ref. @18#!. Here and in the following figures the diameterd of the
host particles is chosen as the unit of length.
t
-

he
st
be
os

through the glass-transition singularitywc . For ds50.6 the
particle still becomes trapped atwc , but the f q

sc-versus-q
graph is narrower than before~see Fig. 2!. This means that
the center of the smaller particle can explore a larger volu
Reducing the particle sizeds further, the system passe
through a percolation threshold at some critical diameterdsc.
In the following we will only be interested in tagged pa
ticles with diameters ds.dsc, for which the Lamb-
Mössbauer factor shows the generic fold bifurcation.

C. Asymptotic laws

1. b relaxation

Close to the bifurcation, the correlatorsFq
s(t) show a

characteristic two-step relaxation process, as can be see
Fig. 3. In Ref.@4# it was discussed, and in Ref.@35# it was
demonstrated for relevant examples, that the long-time
havior of correlators, which are the solutions of MCT equ
tions such as Eqs.~1! and ~9!, is determined by

Fq
s~s!

12sFq
s~s!

5L@F q
s
„F~ t !,Fs~ t !…#~s!. ~13!

Here Fq
s(s) denotes the Laplace transformF(s)

5L@F(t)#(s):5*0
`e2stF(t)dt of Fq

s(t). These equations
depend only on equilibrium quantities via the static struct
factor. They are therefore independent of the microsco
dynamics and any additional regular contributions to the k
nelsmq(t) andmq

s(t). Consequently, it makes no differenc
for the asymptotic results discussed throughout this pa
that we chose Brownian instead of Newtonian dynamics,
omitted regular contributions to the kernels.

s.

FIG. 2. Same as Fig. 1 for a tagged particle of diameterds

50.6.
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Inserting the asymptotic expansion~6! into Eq.~13!, using
Taylor’s theorem on the mode-coupling functionalF q

s , and
collecting like-order terms, one obtains, in leading and ne
to-leading order,

Fq
s~ t !5 f q

sc1hq
sG~ t !1hq

s@H~ t !1Kq
sG~ t !21sK̂q

s#.
~14!

Here the critical amplitudehq
s5(12 f q

sc)2ek
s for the tagged-

particle correlator and the correction amplitudesKq
s and K̂q

s

are to be calculated from

(
k

~dqk2Cqk
sc!ek

s5(
k

Cq,k
sc ek , ~15a!

(
k

~dqk2Cqk
sc!ek

sKk
s52~12 f q

sc!eq
s2l1(

k
Cq,k

sc ekKk

1(
p,k

Cqpk
sc ep

sek
s1(

p,k
Cq,pk

sc epek

1(
p,k

Cqp,k
sc ep

sek , ~15b!

(
k

~dqk2Cqk
sc!ek

sK̂k
s52~12 f q

sc!eq
s21dCq

s/C

1(
k

Cq,k
sc ekK̂k . ~15c!

FIG. 3. Self-intermediate scattering functionF1
s(t), calculated

from Eqs. ~9! and ~11!, of the HSS (ds51.0) for wave number
q157.0 at various reduced packing fractions«5(w2wc)/wc

56102n/3, wheren50, . . .,14. The thick curve labeledc shows
the dynamics at the critical packing fractionwc50.515 912 . . . .
The uppermost curve refers to the packing fractionw50.6. The
arrow marks the timet050.425. Here and in some of the followin
figures the full dot and square mark the timests and ts8 , respec-
tively, for «520.001. On the glass side~«.0! the curves forn
513 and 14 are omitted since they would be barely distinguisha
from curvec. Then50,1, and 2 glass curves are omitted, since
Percus-Yevick approximation produces negative values for the
distribution function for such high densities. Here and in the f
lowing figures the unit of time is chosen such that the short-tim
diffusion coefficient of the host particles readsD05

1
160.
t-

Taylor coefficients of the mode-coupling functional are i
troduced by

Cqp1•••pn ,k1•••km

s 5Cqp1•••pn ,k1•••km

sc

1dCqp1•••pn ,k1•••km

s «1O~«2!

5
1

n!

1

m!

]n]mF q
s~ f c, f sc!

] f p1
•••] f pn

] f k1
•••] f km

3~12 f p1

sc!2•••~12 f pn

sc!2

3~12 f k1

c !2•••~12 f km

c !2. ~16!

For the derivation of these general formulas, we made no
of the linearity of the mode-coupling functional inf and f s.
Figures 1 and 2 exhibit the HSS results for the amplitudes
the two diametersds51.0 andds50.6, respectively. Follow-
ing Ref. @18# we show

K̄q
s5K̂q

sA12l1Kq
s/A12l2k1h1~`!A12l ~17!

instead ofK̂q
s , wherek50.961 andh1(`)522.21 for the

HSS.
Equation ~14! for the tagged-particle correlator is for

mally identical to the above expansion~6! for the coherent
density correlator. This reflects the universality of t
asymptotic features of the MCT. Within theb-relaxation
window the dynamics is fixed by theb correlatorG(t) in
leading order, and byG andH in next-to-leading order in an
asymptotic expansion. Correlators referring to different pro
ing variables merely differ in the various amplitudes such
( f q

c , f q
sc), (hq ,hq

s), etc. These amplitudes do not depend
time or on control parameters. However, there are rather
portant differences for the procedure to determine the am
tudes reflecting the fact that the bifurcation in the tagg
particle dynamics is brought about by the bifurcation in t
host-particle dynamics. The amplitudeseq , Kq and K̂q, for
the cage-forming particles are the solutions of singular m
trix equations and the solubility conditions in second a
third orders of the asymptotic expansion determine the s
ing functionsG and H up to a single time scalet0 , which
has to be matched at the critical point@18#. By contrast, the
positive matrixCqk

sc has a spectral radius smaller than un
@33#. Hence, the matrixdqk2Cqk

sc is regular, and the ampli-
tudes are uniquely determined by solving the linear eq
tions ~15!. The scaling functionsG and H are solely deter-
mined by the properties of the host particles. The interact
potential of the tagged particle enters the Lamb-Mo¨ssbauer
factor, and the amplitudes via the direct correlation funct
cq

s , which is hidden in the Taylor coefficients~16!. No fur-
ther time scale needs to be fixed. Even a change of the
croscopic time scalestq

s in Eq. ~9! would not affect the time
scale of the asymptotic behavior. One can always go so c
to the critical point that Eq.~14! holds within a prescribed
error margin.

The first two terms on the right-hand side of Eq.~14! are
known as the factorization theorem: If the density correlat
are rescaled accordingly, the curves collapse onto theb cor-
relator G in an intermediate time window, the so-calle
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b-relaxation region, as demonstrated in Fig. 4 for four wa
numbers. Obviously, theb-relaxation region depends on th
wave number~upper panel! or—put more generally—on the
quantity under consideration~lower panel!. This is accounted
for by the twoq-dependent amplitudesKq

s andK̂q
s occurring

in the leading correction to the factorization property. Theb
window expands as the system moves closer to the cri
point, as demonstrated by a comparison ofFq

s(t) for q2

510.6 for n59 and 10 in Fig. 4. More can be said if w
consider that the dominant corrections are the short-time
rections to the critical law~3!, and the long-time correction
to the von Schweidler law~4! or the corrections to the Lamb
Mössbauer factorf q

s on the liquid ~«,0! or glass ~«.0!
side, respectively. The short-time expansion of the rig
hand side of Eq.~14! is given by f q

sc1hq
s(t/t0)2a$1

1@k(a)1Kq
s#(t/t0)2a%, so that the factork(a)1Kq

s deter-
mines the sign and strength of the leading correction to
critical decay. For the HSS one obtainsk(a)520.002@18#
and Kq

s,Kp
s for q,p ~compare Fig. 1!. This explains in

particular why at early times the curves with smaller wa

FIG. 4. Upper panel: Rescaled self-intermediate scattering fu

tion F̂q
s(t)5„Fq

s(t)2 f q
sc
…/hq

s ~solid lines! of the hard-sphere system
(ds51.0) for four different wave numbers at reduced packing fr
tion «5(w2wc)/wc56102n/3 with n59, showing collapse onto
theb correlatorG @dashed lines, Eq.~5!# in theb-relaxation region.
On the extreme left and right, small numbers near each curve
cate the wave numbersq0 , q1 , q2 , and q3 , marked in Fig. 1.
Lower panel: Rescaled intermediate scattering function~ISF! and
self-intermediate scattering function~SISF! for wave numberq2

510.6 atn510, compared to theb correlatorG. The glass curves
(«.0) are shifted downward by 1 to avoid overcrowding. T
open symbols mark the boundaries of theb-relaxation region as
defined at the end of Sec. III C 1. Some symbols are missing
cause they are either outside the display range~the long-time part of
the liquid curve forq1) or the range of validity is nonexistent~glass
curves forq0 , q1 , andq3).
e

al

r-

t-

e

number fall below the curves with larger wave numb
Sincek(a)1Kq

s changes sign betweenq2 andq3 , curves 0,
1, and 2 fall below and curve 3 is above the dashed asy
tote for t,10. On the liquid side the analogous formu
Fq

s(t)5 f q
sc2hq

s t̃ b$12@k(2b)1Kq
s# t̃ b% provides the expla-

nation for the deviations from the von Schweidler asympt
@Eq. ~4!# at later times: theq dependence of the deviations
again determined by the amplitudeKq

s . Thus if one curve
lies above the other when deviating from the factorizat
theorem at short times, it will also do so at long times. T
rule, which was already discussed forFq(t) in Ref. @18#,
holds for all quantities that asymptotically obey Eq.~14!. For
the HSS one obtainsk(2b)50.569@18#, and therefore Fig.
1 implies thatk(2b)1Kq

s changes sign betweenq1 andq2 .
This explains why curves 0 and 1 are below, and curve
and 3 above, the dashed asymptote in Fig. 4 for log10t'6.
On the glass side the long-time behavior ofFq

s(t) is de-

scribed byf q
s5 f q

sc1hq
sAs/(12l)@11As(K̄q

s1k)#.
Armed with Fig. 2 and what was explained fords51, it is

easy to infer what Fig. 4 would look like for a hard sphere
diameterds50.6. Since it was already explained in Ref.@18#
how the deviations from the leading order translate into
frequency domain, spectra shall not be discussed in this
per.

In order to discuss the quality of the asymptotic expa
sions in a controllable manner, some convention for the e
margin has to be made. There are various possibilities@18#.
In this paper the range of validity shall be defined as the ti
window where, for a given valueF of the correlator, the
time tF for the solution,F5F(tF), deviates from the time
tF
as for the asymptotic expansion, sayF5 f q

c1hqG(tF
as), by

less than«̃ percent. This definition can always be applied
monotonic functions of time, in particular to functions in th
b-relaxation window. If one chooses«̃ so small that the
deviations from the leading order are quantitatively e
plained by the leading corrections, the range of validity
the leading-orderb-relaxation asymptote can be shown
expand with theb time scalets for s→01, and with thea
time scalets8 for s→02. In Fig. 4 and some of the follow-

ing figures, the end points of the time intervals with«̃
520% are marked by various symbols.

2. a relaxation

Within the a-relaxation window, the tagged-particle co
relatorFq

s(t) obeys the superposition principle as formulat
in Eq. ~8! for the density correlator:Fq

s(t)5F̃q
s(t/ts8 ). The

control-parameter-independent master functionF̃q
s( t̃ ) is ob-

tained from Eq.~7!, where only superscriptss have to be
added to correlators and kernels@3#.

In Fig. 5, various rescaled correlatorsF1
s(t) are compared

to the a master function. The superposition principle be
describes thea relaxation for later times. As the glass tra
sition is approached from the liquid side, the range of val
ity of the superposition principle, which is marked by di
monds and defined in analogy to theb-relaxation regime
above, extends to earlier rescaled timest̃ . Close to the criti-
cal point, the deviations from thea master curve can be
understood in terms of the leading-order correctiondF̃q

s( t̃ )

c-

-

i-

e-



g

d

e

o
e
th

s

ce

-
to

ew

ver

las

e
as

sult

for

in-

by
ales

for

ack-

ful

ion
f-
rm
-
do-

s
s-
e

c-

.

3390 PRE 58M. FUCHS, W. GÖTZE, AND M. R. MAYR
to the a-scaling law, which is linear ins: Fq
s(t)5F̃q

s( t̃ )

1dF̃q
s( t̃ )1O(s2) @18#. Although the equation governin

the time evolution ofdF̃q
s( t̃ ) is rather involved, its short-

time behavior can be expressed in terms of the amplitu
introduced above in connection with theb relaxation. Up to
errors of orders t̃ b, one obtains

dF̃q
s~ t̃ !52shq

s$B1 t̃ 2b1@ k̃~2b!22B1Kq
s2K̂q

s#%,
~18!

with k̃(2b)52.97 for the HSS@18#. The t̃ 2b term, which
diverges fort̃→0, dominates the deviations froma scaling
for small usu. Consequently, asymptotically close towc , the
deviations occur at short times, where thea master function
is described by von Schweidler’s law~4!. Therefore, thet̃
window for thea scaling expands to smaller rescaled tim
proportional tousu1/2b. For smallusu, the a-relaxation win-
dow becomes independent of the correction amplitudesKq

s

and K̂q
s , and thus independent of the observable under c

sideration, because the observable-dependent amplitudhq
s

occurs as a prefactor to both von Schweidler’s law and
relevant correctiont̃ 2b. The dotted line in Fig. 5 illustrate
how the deviationsdF̃q

s( t̃ ) from thea master function can

be described by the leading correction2shq
sB1 t̃ 2b.

IV. MEAN-SQUARED DISPLACEMENT

A. Equation of motion

The equation of motion for the mean-squared displa
ment ~MSD! dr 2(t)5^urW(t)2rW(0)u2& @36# can be obtained
from Eq. ~9! by exploiting its relation to the small-wave
number behavior of the tagged-particle density correla
Fq

s(t)512q2dr 2(t)/61O(q4):

FIG. 5. a-scaling plot of the self-intermediate scattering fun
tion: F1

s(t), taken from Fig. 3, for reduced packing fractions«

5(w2wc)/wc52102n/3, n51,3,5,7, and 9, vs rescaled timet̃

5t/ts8 . The thick solid line is thea master functionF̃1
s( t̃ ). The

diamonds mark the early-time bound for thea-scaling regime as

defined at the end of Sec. III C 1. The dotted line indicatesF̃1
s( t̃ )

2sh1B1 t̃ b, which includes the small-t̃ correction according to Eq
~18!.
es

s

n-

e

-

r

dr 2~ t !1D0
sE

0

t

m~0!~ t2t8!dr 2~ t8!dt856D0
st. ~19!

Here we have introduced the kernelm(0)(t)
5 limq→0q2mq

s(t). Carrying out the limitq→0 in Eq. ~10!,
one finds the representation of the new kernel as a n
mode-coupling functional, m(0)(t)5FMSD„F(t),Fs(t)…,
where

FMSD~ f , f s!5
1

6p2E0

`

nSkck
s2k4f kf k

sdk. ~20!

Again this integral shall be rewritten as a Riemann sum o
the previously introduced wave-vector grid of 100 terms:

FMSD~ f , f s!5@nD5/~6p2!# (
k̂5 1/2

99.5

Skck
s2k̂4f kf k

s . ~21!

Two side remarks concerning the preceding formu
might be of interest. First, instead of solving Eq.~19! with
Fq(t) and Fq

s(t) as an input for the determination of th
kernel m(0), one could obtain the desired result directly
the small-wave-vector limitdr 2(t)56 limq→0@12Fq

s(t)#/
q2. We have studied this procedure, and checked the re
to be the same as obtained from Eqs.~19! and ~20!. How-
ever, to do this, we had to use more than 100 grid points
the Riemann sum, and extrapolate carefully from small-q to
zero. This is necessary, since the discretization in Eq.~11! is
too crude to produce reliable results for very smallq, say
q5D or 2D. However, after carrying out the smallq limit
for q2mq

s(t), the discretization~21! of the integral in Eq.~20!
is harmless since the major contributions come from the
termediate wave-vector domaink;7. This reflects the fact
that the sluggish dynamics of the tagged particle is ruled
the cage effect, i.e., by structure correlations on length sc
of the interparticle distance.

Second, there is a trivial relation betweendr 2(t) and the
velocity correlation functionKs(t). Equations~19! and ~20!
are equivalent to the MCT equation discussed earlier
Ks(t) in the Laplace domain@3#. Following this route,dr 2(t)
has been evaluated previously for some representative p
ing fractions for the HSS@26#. We prefer to solve Eq.~19!
directly, since thereby we need not worry about a care
handling of the strong small-s divergency exhibited by
L@dr 2(t)#(s).

B. Diffusion-localization transition

In order to understand that the ideal liquid-glass transit
implies a transition from particle localization to particle di
fusion, let us remember that the Fourier back transfo
Fs(r ,t)5^d„rW2@rW(t)2rW(0)#…& of the tagged-particle den
sity correlator from the wave vector to the displacement
main is the probability density for finding at timet the par-
ticle in a distancer from its starting position. In the glass thi
distribution levels off for long times at the normalized di
tribution f s(r ). Hence the tagged particle is localized in th
glass matrix. A characteristic localization lengthr s can be
defined, for example, in terms of the small-q limit of the
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Lamb-Mössbauer factor:f q
s512(qrs)

21O(q4). This fixes
the long-time asymptote of the mean-squared displacem
for s.0:

lim
t→`

dr 2~ t !56r s
2 . ~22!

Obviously, dr 2(t)5*Fs(r ,t)r 2d3r , so that 6r s
2

5* f s(r )r 2d3r . Equation~19! yields the general formula fo
r s in terms of sums over the glass form factors@3#

r s
251/FMSD~ f , f s!. ~23!

In the liquid state the low-frequency behavior of the Lapla
transform of all correlation functions and kernels is smo
@33#. Therefore, from Eq.~19! one derives the well known
formula for the linear divergency in time:

lim
t→`

dr 2~ t !/t56Ds. ~24!

HereDs is the tagged-particle diffusivity. It is also called th
long-time diffusivity in order to distinguish it fromD0

s ,
which determines the short-time asymptote limt→0dr 2(t)/t
56D0

s . From Eq.~19! one readily derives for the ratio ofDs

andD0
s :

Ds

D0
s

5
1

11D0
sE

0

`

m~0!~ t !dt

. ~25!

Note that this ratio is less than unity, which is an obvio
manifestation of the cage effect.

Figure 6 exhibits the evolution of the bifurcation dynam
ics as probed bydr 2(t) for the HSS. For very smallt, one
observes short-time diffusion. With increasing density
short-time diffusion is suppressed due to the cage effect.
glass curves level off for long times at 6r s

2 . With decreasing
density the localization length increases up to some crit

FIG. 6. Mean-square displacementdr 2(t), obtained from Eqs.
~19! and~21!, for the hard-sphere system (ds51.0) at various pack-
ing fractions. The solid curves are labeled as in Fig. 3. The stra
dotted line with unit slope indicates the long-time-diffusion asym
tote (6Dst) for the n59 liquid curve.
nt

e
h

s

e
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value r sc . The critical valuer sc50.0746 fits nicely to the
Lindemann melting criterion, as already noted in Ref.@2#.
The liquid curves intersect the plateaur sc for times of order
ts ; the time ts is indicated for then59 curve by a dot in
Fig. 6. Then they leave the plateau according to von S
weidler’s law in order to cross over to the diffusion lim
dr 2(t)56Dst for times large compared tots8 . For the n
59 curve, the latter asymptote is indicated by a dotted l
in Fig. 6, and the timets8 is marked by a full square on th
graph. The increase ofdr 2(t) above 6r s

2 is thea process of
the mean-squared-displacement dynamics. It deals with
tagged particle’s leaving of the cage. The initial part of th
process, wheredr 2(t) is close tor sc

2 , is stretched over a
large dynamical window ifu«u is small. For times of order
20ts8 , dr 2(t) has increased to about unity; then stochas
dynamics sets in anddr 2(t) follows the diffusion asymptote
Between the end of the regular short-time transient and
start of thea process, there is a mesoscopic window f
another anomalous dynamics. It deals with the stretched
proach ofdr 2(t) toward the plateau 6r s

2 . In this sense the
bifurcation dynamics, i.e., the dynamics outside the transi
deals with a two-step relaxation process. Asymptotic exp
sions shall be used to describe the bifurcation scenario
analytical formulas, thereby providing an understanding
Fig. 6.

C. Asymptotic laws

1. b relaxation

An equation connecting the Laplace transformsdr 2(s)
and m(0)(s) of dr 2(t) and m(0)(t), respectively, within the
structural relaxation regimet@t0 , follows from Eq. ~13!:
sdr 2(s)56/@sm(0)(s)#. By inserting the asymptotic expan
sions ~6! and ~14! into this equation, one again obtains th
general result for theb relaxation to next-to-leading order:

dr 2~ t !/65r sc
2 2hMSDG~ t !

2hMSD@H~ t !1KMSDG~ t !21sK̂MSD#. ~26!

Here r sc
2 follows from Eq.~23! with f and f s specialized to

f c and f sc, respectively, and the other amplitudes read

hMSD5r sc
4 @FMSD

c ~h, f sc!1FMSD
c ~ f c,hs!#, ~27a!

KMSD5
r sc

4

hMSD
@FMSD

c ~h,hs!1FMSD
c ~hK, f sc!

1FMSD
c ~ f c,hsKs!#2l

hMSD

r sc
2

, ~27b!

K̂MSD5
r sc

4

hMSD
F]FMSD

c ~ f c, f sc!

C]«
1FMSD

c ~hK̂, f sc!

1FMSD
c ~ f c,hsK̂s!G2

hMSD

r sc
2

, ~27c!

where we exploited that the mode-coupling function
FMSD( f c, f sc) is linear in f and f s, and introduced short-han
notation likehK for (hK)p5hpKp .
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In Fig. 7 the mean-squared displacement is compare
the asymptotic results in leading and next-to-leading or
for a tagged particle in the HSS. The next-to-leading-or
result explains the deviations from the leading-order o
The general trend of the deviations is again explained by
short-time corrections to the critical law and the long-tim
corrections to the von Schweidler law on the liquid side—
to the nonergodicity parameter 6r sc

2 on the glass side. The
range of validity is smaller than for any of theq vectors
discussed in connection with Fig. 4, since the absolute va
of KMSD is larger than of all theKi

s ( i 50,1,2, and 3!. The
next-to-leading-order results are a considerable improvem
over the leading ones: On the glass side, the second-o
range of validity extends over almost three decades, w
the first-order range—as defined at the end of Sec. III C
does not even exist. On the liquid side the next-to-lead
order adds about a decade to the short-time side of the r
of validity. It extends it beyond the boundaries of the figu
on the long-time side. However, this happens in part by
cident because the exponent of the second term (t2b, 2b
51.16) in the von Schweidler series is close to the ex
long-time exponent, given by the diffusion law (6Dst).

2. a relaxation

A description of thea process for the mean-square
displacement dynamics can be derived from Eq.~19!.
Thereby one obtains the superposition principle

dr 2~ t !5d r̃ 2~ t/ts8 !. ~28!

Here the master functiond r̃ 2 is to be calculated from

FIG. 7. Mean-square-displacement curvesdr 2(t) ~full lines!
taken forn59 from Fig. 6. The dashed and dot-dashed lines,
spectively, are the leading and next-to-leading orders of
asymptotic expansion ~26! with r sc

2 55.5731023, hMSD

50.0116, KMSD521.23, andK̂MSD53.33, calculated from Eqs
~27!. The open symbols indicate the range of validity of the fi
~L! and second~s! order formulas as defined at the end of Se
III C 1. On the liquid side the second-order range of validity e
tends beyond the displayed range. On the glass side the first-o
range of validity does not exist. The dotted straight line of slo
unity for small times indicates the short-time-diffusion asympt
(6D0

st).
to
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0

t̃
m~0!c~ t̃ 2t8!d r̃ 2~ t8!dt856 t̃ , ~29!

with the initial condition d r̃ 2( t̃ )56@r sc
2 1hMSDt̃ b#

1O( t̃ 2b). The kernel is given by the mode-coupling fun
tional at the critical pointFMSD

c and by the density-

fluctuation master functionsm(0)c( t̃ )5FMSD
c

„F̃( t̃ ),F̃s( t̃ )….
The various superposition principles imply coupling

thea-relaxation time scales or relaxation rates in the follo
ing sense@3#. Let us characterize the long-time decay of t
variableA in the liquid by some timetA . This time diverges
upon approaching the glass transition: in the lead
asymptotic limit fors→02, one findstA5CAts8 . All times
or rates are proportional to each other and follow a pow
law, specified by the exponentg: 1/tA5GAu«ug @Eq. ~2!#.
The constants of proportionalityCA or GA depend on the
variableA and on the precise convention for the definition
tA . The scale coupling ora-scale universality is demon
strated in Fig. 8, where the diffusion coefficients of har
sphere particles of diametersds51.0 andds50.6, and the
a-scaling rate 1/t1

as of the density fluctuations for wave vec
tor q1 are compared to the asymptotic predictions. Althou
the asymptotic behavior is the same for all the quantities,Ds

for ds50.6 already deviates visibly from the asymptotic r
sult for n54, while the other quantities start to deviate on
for n53. This again underlines the nonuniversality of t
deviations. Note that this difference might not be due
asymptotic corrections in the sense discussed in this pa
but could come from the mismatch of structural relaxatio
governed by the MCT kernelmq

s(t), and the transient dy-
namics, ruled by the timestq

s in Eq. ~9!.
In Fig. 9 the rescaled mean-squared displacement is c

pared to thea master functiond r̃ 2( t̃ ) for various packing
fractions. The time scalets8 is taken from Eq.~2!. Note that
this figure is a harder test of the asymptotics then just tes

-
e

t
.

er
e

FIG. 8. Self-diffusion coefficientsDs for tagged particles of
diametersds51.0 and 0.6 anda-relaxation rate 1/t1

as vs the re-
duced packing fraction«5(w2wc)/wc . The solid lines are the
power-law asymptotes (GAu«ug, g52.46). Thea –scaling timet1

as

is defined as the time when the tagged-particle density correl
F1

s(t), shown in Fig. 3, has relaxed to half of its critical platea
value f 1

sc50.760.
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the time-density superposition principle, since it tests
scaling timets8 in addition to the shape of the master fun
tion.

The leading correction to Eq.~28! is known to be of order
usu, while the leading corrections to the factorization pro
erty are of relative orderAusu @18#, which explains whya
scaling works much better thanb scaling. As we already
pointed out in Sec. III C 2, the ‘‘quality’’ ofa scaling is
observable independent—as can be seen by comparing F
to Fig. 5—even though first-orderb scaling is much worse
for dr 2(t) than forF1

s(t). This is so because the domina
correction to the long-timeb process is the corrections to th
von Schweidler law~see Fig. 7!, which is absorbed into the
short-time expansion of thea master function. The dashe
and dotted curves in Fig. 9 show how the deviations from
superposition principle for small rescaled timest̃ are ex-
plained by Eq.~18!.

V. GAUSSIAN APPROXIMATION

The small-q expansion of the density correlatorFq
s(t),

which lead us to the equation of motion for the mea
squared displacement, can be viewed as the leading ter
the Gaussian approximation@36–38#

Fq
s~ t !'e2q2dr 2~ t !/6. ~30!

The Gaussian approximation becomes exact for the sh
time dynamics~either ballistic or—as in our case—diffusiv
motion! and for the long-time diffusion, and is known t
work quite well for simple liquids such as argon in its norm
state@38#. So in the following we are primarily interested i
the intermediate time window of the structural-relaxation
gime.

FIG. 9. a-scaling plot of the mean-square displacementdr 2(t),
taken from Fig. 6, for reduced packing fractions«5(w2wc)/wc

52102n/3, n51,3,5,7, and 9, vs rescaled timet̃ 5t/ts8 . The thick

solid line is thea master functiond r̃ 2( t̃ ) calculated from Eq.~29!.
The diamonds mark the early-time bound for thea-scaling regime
as defined at the end of Sec. III C 1. The dashed line shows
master function corrected according to the analog of Eq.~18!. Leav-

ing aside thet̃ -independent bracket term, one obtains the dot
curves.
e
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In Fig. 10, some tagged-particle correlators as calcula
for u«u51027/3 are compared with the Gaussian approxim
tion. The latter describes the behavior of the se
intermediate scattering function of the HSS reasonably
all considered wave numbers. Coming from small wa
numbers, at which the Gaussian approximation is asymp
cally exact, the deviations start to appear at the end of
b-relaxation regime, i.e., in the von Schweidler region
exemplified forq5q0 . Going to still larger wave number
like q2 andq3, the Gaussian approximation also deviates
the beginning of theb-relaxation regime, i.e., in the critica
region.

The Gaussian approximation for the critical amplitud
can be found by substituting Eq.~26! into Eq. ~30!, and
expanding the exponential:

f q
sc'e2q2r sc

2
, ~31a!

hq
s'e2q2r sc

2
q2hMSD, ~31b!

Kq
s'KMSD1 1

2 q2hMSD, ~31c!

K̄q
s'K̄MSD1

1

2A12l
q2hMSD. ~31d!

HereK̄MSD has been introduced in analogy to Eq.~17!. These
approximation results are compared to the various am
tudes in Figs. 1 and 2. In both cases we find a good qua
tive description for the amplitudes; the Gaussian approxim
tion even describes the change of sign ofKq

s and K̄q
s . The

Gaussian results forf sc and hs are in better quantitative
agreement with the exact results than the results forKq

s and

K̄q
s , since the leading small-q corrections to Eqs.~31a! and

~31b! are of higher order than those for Eqs.~31c! and~31d!.
Obviously the results fords51.0 are better than for the
smaller particle withds50.6. For the large particle they eve
give good quantitative descriptions for some of the amp

he

d

FIG. 10. Test of the Gaussian approximation~30! ~dashed lines!
and of the cumulant expansion~32! ~dot-dashed lines! for the self-
intermediate scattering function of the HSS~solid lines! at packing
fractionw5wc(161027/3) for the wave numbersq0 , q1 , q2 , and
q3 introduced in Fig. 1.
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tudes: practically no deviation can be found for the critic
Lamb-Mössbauer factorf sc up toq515, and the critical am-
plitude hs is reproduced up toq55.

These results also explain the deviations for the dynam
in Fig. 10: Since the critical amplitudehs is overestimated by
the Gaussian approximation, the dashed curves relax fast
the b-relaxation region. On the glass side, a largerhs leads
to a largerf s via f s5 f sc1hsAs/(12l). In the same way
the corresponding figure fords50.6 can be inferred from
Fig. 2.

VI. NON-GAUSSIAN PARAMETER

A. Equation of motion

A cumulant expansion can be used systematically to c
sify the deviations of the density correlator from its Gauss
approximation. The leading contribution to the deviations
proportional to the non-Gaussian parameter~NGP! a2(t).
One gets

Fq
s~ t !5e2q2dr 2~ t !/6$11 1

2 a2~ t !@q2dr 2~ t !/6#21O~q6!%,
~32!

where a25 3
5 @dr 4(t)/dr 2(t)2#21, with dr 4(t)5^urW(t)

2rW(0)u4& @36–38#. Since the mean-quartic displaceme
dr 4(t) is proportional to the fourth Taylor coefficient in
small-q expansion ofFq

s(t)512q2dr 2(t)/3!1q4dr 4(t)/5!
1•••, one can derive an equation of motion fora2 from
Eqs.~9! and ~19!:

@11a2~ t !#dr 2~ t !2

1D0
sE

0

t

m~0!~ t2t8!@11a2~ t8!#dr 2~ t8!2dt8

56D0
sE

0

t

@21m~2!~ t2t8!#dr 2~ t8!dt8. ~33!

Here a further mode-coupling functional for the kern
m(2)(t)5FNGP„F(t),Fs(t)… is introduced:

FNGP~ f , f s!5
1

10p2E nSkck
s2k4f kS ]2f k

s

]k2
1

2

3k

] f k
s

]k D dk.

~34!

For a numerical calculation, integral~34! is expressed by a
Riemann sum analogous to Eq.~21!. The derivatives] f k

s/]k
and ]2f k

s/]k2 are approximated through their numeric
equivalents, e.g.,] f k

s/]k5( f k1D2 f k2D)/(2D), except for
q50.2 and 0.6, where they are calculated from a smaq
extrapolation according to the Gaussian approximation.
the same reasons as discussed above in connection with
~19!, ~20!, and~21!, it is preferable to solve the derived equ
tion for a2(t) directly rather than to deduce the no
Gaussian parameter as the small-q limit from the numerical
results for Fq

s(t). We have nevertheless checked that
latter procedure can be followed, provided one choose
finer wave-vector grid and a proper large-q regularization of
integral ~10!.
l

s

in

s-
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s

t

l
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B. Transition scenario

To begin with, some comments concerning the gene
properties ofa2(t) might be appropriate. Neitherdr 2(t) nor
a2(t) are correlation functions and, therefore, the kno
general properties of positive definite functions likeFq(t)
andFq

s(t) need not be valid for these quantities. WithA(t)

5urW(t)2rW(0)u2 denoting a positive observable, one obtai
dr 2(t)5^A(t)&, and thereforedr 2(t)>0. SinceFq

s(t)51
2q2dr 2(t)/61O(q4), for completely monotone density cor
relators one finds2(2]/]t) ldr 2(t)>0 for l 51,2, . . . . So
within the structural relaxation windowt@t0 , and for all t,
for our colloid model defined by Eqs.~1! and~9!, the mean-
squared displacement is an increasing function of tim
(]/]t)dr 2(t)>0. The inequality^A2&>^A&2 implies a2(t)
>22.5. Hence the non-Gaussian parameter is bounded f
below, but it can have either sign. At early times the dens
correlator exhibits Gaussian behavior, independent
whether Newtonian or Brownian dynamics is consider
and thereforea2(t→0)50. The long-time liquid correlators
describe diffusion, which is a Gaussian process, and t
a2(t→`)50. From Eqs.~33! and ~19! one finds fors,0
thata2(t→`)5O(1/t). Hence in the liquid statea2(t) can-
not be a monotonic function of time. Negativea2(t) means
that the probability for the particle to move very far is su
pressed relative to the one expected for a random-walk
cess. Similarly, the probability for moving far is enhanced
a2(t).0. In the latter case the cage boundary is more fu
than in the former.

Figure 11 exhibits the evolution of the non-Gaussian
rametera2(t) upon crossing the bifurcation point for tagge
spheres of diametersds51.0 andds50.6 in the HSS. For the
glass state the curves exhibit arrest for late timesa2(t→`)

FIG. 11. Non-Gaussian parametera2(t), obtained from Eq.
~33!, for tagged particles of diametersds51.0 and 0.6. The labeling
is done as in Fig. 3.
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5fNGP511FNGP( f , f s). For the liquid state thea process
manifests itself as a bump of thea2-versus-log10t diagram
starting with an increase above the plateauf NGP

c , reaching
some maximum, and then decreasing to zero. The liq
curves forn>10, i.e., foru«u,1023, exhibit the superposi-
tion principle: a change ofs causes a shift of the peak pa
allel to the logarithmic time axis without change of th
shape. The first structural relaxation step deals with the
proach towardf NGP

c from below fort@t0 . The functions for
u«u<1024 exhibit the two-step-relaxation scenario fort
*104.

For dense normal liquidsa2 is found to be positive, in
agreement with molecular dynamics results for liquid arg
near its triple point. Our results fords51.0 andn52 are of
about the same magnitude as the value 0.13 found for
Lennard-Jones system@38#. Increasing the density towar
the critical one implies an increase ofa2 by about a factor 3
for both values ofds studied, but for the smaller spheres t
non-Gaussian parameter is about three times larger tha
the larger ones. One concludes that glassy dynamics in
liquid does not lead to dramatic changes of the magnitud
the non-Gaussian parameter, a finding also supported by
10.

For long times, and for the smaller sphere for all times,a2
is positive. This enhanced probability for the particle
move further is what one would expect as a result of
building of a backflow pattern in the liquid. However, fo
ds51.0 the negative plateau valuef NGP

c implies that for suf-
ficiently large densities a dip to negative values fora2(t)
appears. Fords50.6 the plateau is positive and the dip do
not exist. The depth of the predicted dip, as opposed to
height of the maximum in thea regime, is not a structura
relaxation phenomenon. Rather, it is caused by the cross
from the short-time transient to the first structural relaxat
step. The mode-coupling approximations are constructe
describe the long-time behavior due to the cage effect.
theory does not handle short-time collision effects correc
and therefore the size of the dip predicted fords51.0 might
be an artifact due to the insufficiencies of the MCT in
regime, which it was not made for. An analogous reserva
applies, of course, to the quantitative details of the crosso
regimes displayed in Fig. 3 forFq

s(t), and in Fig. 6 for
dr 2(t). The MCT equations do not guarantee the validity
the inequalitya2(t)>22.5. Indeed, fords51.0 andw.wc
10.01 the inequality is violated, and therefore the cor
sponding glass curves are not shown in Fig. 11.

The extension of the Gaussian approximation accord
to Eq. ~32! is illustrated by the dash-dotted lines in Fig. 1
id
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For the wave vectorsq<q2 , where the Gaussian approxima
tion yields a good description of the correlators, the addit
of the leading-cumulant correction proportional toa2(t) im-
proves the fit seriously. However, for larger wave vectors
addition of thea2 term does not lead to improvements, as
demonstrated for wave vectorq3 in Fig. 10. Asa2 is con-
siderably larger fords50.6 than fords51.0, the cumulant
expansion~32! already breaks down forq nearq0 .

Figures 3, 6, and 11 have been shown in order to illustr
the theoretical essence of the MCT bifurcation. To avo
misleading conclusions from Fig. 11, it might be adequate
remember the windows accessible by state-of-the-art exp
mental studies. In molecular-dynamics work@11,25# a varia-
tion of the diffusivity or other structural relaxation scale
could be detected over a window of about four decades. T
corresponds to the curvesn&7 in our figures. The dynamica
window for structural relaxation explored by van Megen a
Underwood@9# by photon-correlation spectroscopy is al
about four decades wide. The size of the dynamical wind
accessible by the neutron-spin-echo instrument@5# is smaller
than three decades. To focus on results fora2 which might
be relevant for the interpretation of experiments with t
techniques available today, one should ignore the results
n*8 in Fig. 11. This restricted set of results exhibits neith
the superposition principle nor the two-step relaxation s
nario. The leading-order asymptotic results for the MCT
furcation dynamics do not describe the MCT results sho
in Fig. 11 for n&8, i.e., for u«u.0.001, not even qualita
tively. But in the following it shall be shown that the resul
can be understood in terms of the next-to-leading asympt
laws.

C. Asymptotic laws

1. b relaxation

In order to work out the dynamics in theb-relaxation
window, we start from the Laplace transform of Eq.~33!:

L@„11a2~ t !…dr 2~ t !2#~s!

5sdr 2~s!2$21sL@FNGP„F~ t !,Fs~ t !…#~s!%,

~35!

where the Laplace transform of Eq.~19! has been used. In
serting the asymptotic expansions~6!, ~14!, and ~26! for
Fq(t), Fq

s(t), anddr 2(t), respectively, one obtains

a2~ t !5 f NGP1hNGPG~ t !

1hNGP@H~ t !1KNGPG~ t !21sK̂NGP#. ~36!

Here the amplitudes are given by
hNGP5FNGP
c ~h, f sc!1FNGP

c ~ f c,hs!, ~37a!

KNGP5@FNGP
c ~h,hs!1FNGP

c ~hK, f sc!1FNGP
c ~ f c,hsKs!#/hNGP1

hMSD

r sc
4 ~12l!@2r sc

2 hNGP2hMSD~11 f NGP!#/hNGP, ~37b!

K̂NGP5F]FNGP
c ~ f c, f sc!

C]«
1FNGP

c ~hK̂, f sc!1FNGP
c ~ f c,hsK̂s!G Y hNGP1

hMSD

r sc
4 @hMSD~11 f NGP!22r sc

2 hNGP#/hNGP. ~37c!
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The analytic results are compared with the numerical so
tions forn59 in Fig. 12. Because of the large negative va
of hNGP, the leading order qualitatively accounts for th
steep rise ofa2 in the b-relaxation region. This is a majo
reason for the absence of a plateau even though the red
packing fractionu«u50.001 is so small. The large size o
hNGP also explains why the long-time limitf NGP in the glass
is much more suppressed below the plateau valuef NGP

c , than
shown in Fig. 7 fordr 2(t). There are two further peculiari
ties hidden in Eqs.~37!, which render the discussion of Fig
12 different from those considered so far for other examp
The a process for the density correlators and for the me
squared displacement deals with monotonic functions.
those cases the leading corrections to the von Schweidler
influence the details but not the general trend of the fu
tions. The positive slope ofa2(t) in the leading-order
b-relaxation regime, however, has to change to a nega
one in the latea-relaxation regime since thea2(t)-versus-t
curve eventually has to decrease to zero. Therefore
a2(t)-versus-log10t diagram exhibits a bump. The next-to
leading asymptotic formula~36!, as opposed to the leading
order one, can reproduce at least qualitatively this new
ture of the diagram as shown by the dot-dashed lines in
12. The second difference concerns the remarkable par
shift of the solution relative to the leading asymptote occ

FIG. 12. b-relaxation behavior of the non-Gaussian para
eter a2(t) ~full lines! taken for n59 from Fig. 11. The dashed
and dot-dashed lines, respectively, are the leading- and n
to-leading-order asymptotic expansion~36!. The critical
amplitudes (ds51.0: f NGP

c 520.0445, hNGP521.12, KNGP

50.543, and K̂NGP522.98; ds50.6: f NGP
c 50.891, hNGP

521.37, KNGP53.61, andK̂NGP529.85) were calculated from
Eqs.~37!. The symbols indicate the range of validity of the leadi
(L) and the next-to-leading (s) order as defined at the end of Se
III C 1—the first-order range of validity indicated in the lowe
panel is due to an ’’accidental’’ intersection of curves.
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ring for times nearts
2 where the liquidb correlator exhibits

a zero,G(ts
2)50(ts

250.704ts for the HSS!. The correction

is given byhNGP@H(ts
2)1sK̂NGP#. For the previously dis-

cussed examples the two terms in the brackets partly c
celed each other, while fora2(t) they add up. As a result this
shift is about an order of magnitude larger than in the
amples studied in Figs. 4 and 7, or in the examples con
ered in Ref.@18#. This shift is responsible for the fact that fo
n59 the leading-order asymptotic result fo
a2(t)(ds51) ~dashed lines in the lower panel of Fig. 12! has
a smaller range of validity than the corresponding result
the mean-square displacement~Fig. 7! even thoughuKNGPu
,uKMSDu . Of course, this does not contradict the idea th
the amplitudeK asymptotically determines the range of v
lidity of the leading-order result, because, asymptotica
close to the critical point, the shift becomes irrelevant. Th
the leading-order range of validity fora2(t)(ds51) will fi-
nally overtake that fordr 2(t) ass→0.

One can substitute expansions~26! and~36! into Eq. ~32!
in order to obtain the amplitudes in Eq.~14!. The result
extends the Gaussian approximation~31! for these quantities,
so that the first cumulant is taken care of. The result i
proves the Gaussian approximation forq&q0 . However, for
large wave vectors the extended approximation is worse t
the Gaussian one, which is shown in Figs. 1 and 2 by the
lines. Therefore the described extension is not worthwhil

2. a relaxation

To explore the asymptotic behavior in thea-relaxation
region, the non-Gaussian parameter is plotted versus resc
time t̃ 5t/ts8 in Fig. 13. Comparing the results fords51.0
with the corresponding ones for the mean-squared displ
ment in Fig. 9, one notices that one has to choose a con
erably smaller separationusu for a2(t) than for dr 2(t) to
find comparable agreement with thea-relaxation scaling
law. For n55 and t̃ 51, dr 2(t) agrees with the
superposition-principle asymptote within the accuracy of
drawing in Fig. 9, while the corresponding result fora2 de-
viates seriously from the asymptote. The mean-squared
placement is dominated by the diffusion limit, i.e., Gauss
behavior for t̃ .20. Such contribution is absent ina2 , and
therefore then55 curve in Fig. 13 magnifies the small de
viations from Gaussian dynamics, which for then55 curve
in Fig. 9 start to be visible only fort̃ &0.3.

Figures 13 and 9 are seemingly in contradiction to
statement thata scaling should work equally well for differ-
ent quantities~see Sec. III C 2!. However, as mentioned
above, the non-Gaussian parameter for the packing fract
shown is special in the sense that the corrections for smat̃
contain an important shift term, which stems from the te
in brackets in the short-time expansion of thea-scaling cor-
rection ~18!. In Fig. 13 this finding is illustrated for the
curves with the labeln59. For even smallerusu this shift
becomes irrelevant, thus resolving the paradox.

VII. CONCLUSIONS

In this paper the MCT results for the structural relaxati
of the mean-squared displacementdr 2(t) and non-Gaussian
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xt-
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parametera2(t) were discussed for the hard-sphere syste
More generally, we studied the generating function of th
quantities, viz. the incoherent intermediate scattering fu
tion or tagged-particle correlatorFq

s(t). The work is moti-
vated by the distinguished role of these quantities for
interpretation of spectroscopic data and molecular-dynam
simulations of simple glass forming liquids. The essence
the MCT bifurcation scenario for the evolution of structur
relaxation is contained in the leading asymptotic laws wh
deal with the two scaling laws reviewed in Sec. II. Most
the tests of MCT published so far focused on an assessm
of these universal results. The outcome of this paper dem
strates, in a drastic manner, that the range of validity of
mentioned asymptotic laws is not universal, but rather
pends on the quantity considered. This range of validity
be determined by working out the laws for the leading c
rections. Thereby formulas for a refined data analysis
obtained. There are quantities such asa2(t), which are not
described at all within the presently accessible dynam
window by the leading asymptotic result. In this case
laws, including the leading-order corrections, are neces
for a qualitative understanding.

From Fig. 4 one infers that it is relatively easy to extra
von Schweidler’s law for the relaxation at the structu
factor peak positionq1 , while it is more difficult to identify
this leading asymptotic law@Eq. ~4!# for the larger wave
vectorq3 . The behavior ofFq

s(t) for the intermediate wave
vector rangeq0–q3 is quite similar to what was studied fo
the coherent intermediate scattering function in Ref.@18#.

FIG. 13. a-scaling plot of the non-Gaussian parametera2(t),
taken from Fig. 11, for reduced packing fractions«5(w2wc)/wc

56102n/3, n51,3,5,7, and 9, vs rescaled timet̃ 5t/ts8 . The thick

solid line is thea master functionã2( t̃ ). The dashed line shows th
master function corrected according to the analog of Eq.~18!. Leav-

ing aside thet̃ -independent bracket term, one obtains the dot
curves.
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The results, in particular those for the spectra, can there
be inferred from that earlier work, using the amplitudes fro
Figs. 1 and 2. Inclusion of the calculated correction ter
often extends the range of validity of the asymptotic form
las seriously. Therefore it is advisable to fit the initial part
thea process by the von Schweidler expansion including
t̃ 2b term, as was done recently by Sciortinoet al. @25# in
their analysis of simulation data for supercooled wat
These authors noticed, in particular, that the leading cor
tion term to Eq.~4! was smallest nearq1 . This is in qualita-
tive agreement with Fig. 4, even though there is noa priori
reason to expect our hard-sphere-system results to be
evant for an explanation of the details of water.

Figure 7 implies that thedr 2(t)-versus-log10t diagram ex-
hibits only a small window for von Schweidler’s law, an
that the window for the analytic description is extended s
nificantly by inclusion of thet̃ 2b correction term. It is also
predicted that the critical decay law cannot be identified
reduced packing fractionsu«u>0.001. These findings ar
similar to what was reported in Ref.@11# for the simulation
results for a binary Lennard-Jones mixture.

In agreement with photon-correlation-spectroscopy res
for a hard-sphere colloid@22#, one infers from Fig. 10, and
from the lower panel of Fig. 11, that the Gaussian appro
mation works very well for a hard-sphere system. This fin
ing is not in conflict with the observation thatdr 2(t) does
not exhibit a critical decay law, whileFq

s(t)5exp
@2q2dr2(t)/6# does show this leading asymptotic result@Eq.
~3!# for q;q3 ~see Fig. 4!. The strongt22a corrections to
dr 2(t)/6;r sc

2 2hMSD(t0 /t)a nearly cancel those comin
from the expansion of exp@2q2dr2(t)/6#; the relevant correc-
tion amplitudeKMSD for dr 2(t) is therefore larger than tha
for F3

s(t).
The test of MCT against molecular-dynamics-simulati

results by Kob and Andersen@11,39,40# gives strong suppor
for the theory. This can be appreciated even more if o
considers the comparisons of first-principles MCT calcu
tions of the critical form factors, critical amplitudes, and e
ponent parameter with the data@41#. The authors also con
firmed the power-law singularity for thea-relaxation scales
t}uT2Tcu2g with the predicted connection between the e
ponentg and the von Schweidler exponentb @Eq. ~2!#. How-
ever, they obtained the resultD}uT2Tcug8 for the diffusiv-
ity, with g8,g, in contradiction to thea-scale universality.
This observation underlines in particular that the predic
a –scale coupling is not a triviality. Figure 8 demonstrat
that the corrections to the leading asymptotic law for t
diffusivity of a smaller sphere are larger than the ones for
a-relaxation scale for a representative intermediate w
vector q1 . But our finding for the corrections to the hard
sphere-system asymptotics is too small to explain the
ported results for the cited mixture. The MCT prediction f
the universala scales for the HSS,ta}@ uw2wcu/wc#

22.6

}1/D, was confirmed in a recent analysis by van Meg
et al. @22# of the diffusivity D and the tagged-particle
correlatora scaleta for a hard-sphere colloid.

The results fora2(t) in the upper panel of Fig. 11 ar
unusual if compared to the corresponding ones for repre
tative density correlatorsFq(t) or Fq

s(t). For the curves
with n&8, dealing with the presently in experiments

d
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simulations accessible parameters and windows, the
MCT scaling laws@Eqs. ~5! and ~8!# cannot be identified.
Neither is it possible to recognize the two time fractals@Eqs.
~3! and ~4!#. These findings can be understood by analyti
formulas only, if the next-to-leading asymptotic results a
appreciated, as shown in Fig. 12. However, these obse
tions are not so surprising for the following reasons. Thea
process for the correlatorFq(t) deals with the monotonic
decay from the plateauf q

c to zero. This phenomenon wa
already described within Maxwell’s viscoelastic theory, de
ing with exponential decay and Gaussian density fluct
tions. Glassy dynamics deals with deviations from this p
nomenological description. However, for the time ran
where Fq

s(t), f q
sc/2, which deals with a major part of th

Fq
s(t)-versus-log10t graph, the phenomenological picture r

mains essentially valid. In this part the superposition pr
ciple already holds forn>5, as can be inferred from th
a-scaling analysis in Fig. 5 or from Ref.@18#. Also, for
a2(t) the superposition principle works for the mention
large times, as shown in Fig. 13. But since there Gaus
dynamics is nearly valid,a2(t) is small, and the correspond
ing part of thea2-versus-log10t diagram merely deals with a
not so interesting feature of the figure. The diagram is do
nated by the maximum, and this is located near the end o
window of von Schweidler’s law. Here the corrections a
large compared to the leading terms, and the maximum
only poorly approximated forn&5. But Fig. 5 shows that for
Fq

s(t) the n55 results do not follow thea-scaling master
curve for t/ts8,0.2. This too can be inferred from the corr
sponding scaling plot shown as Fig. 17 in Ref.@18# or from
Fig. 9 for dr 2(t). In the latter case the deviations from sca
ing are judged relative to the underlying elementary ba
ground f q

c and 6r sc
2 , respectively, and therefore they do n

appear as qualitative effects. The non-Gaussian param
magnifies a small effect, and therefore its approximation
asymptotic formulas is judged differently than for the oth
functions. Indeed, for the HSS the predicted sizea2(t)
,0.3 is so small that the effect disappears in the data n
of the measurement on colloids@22#. Let us emphasize tha
the valuef NGP of the plateau was of importance for the pr
ceding discussion. Therefore, it would be of great interest
,
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an assessment of our results to measuref NGP in the glass
state.

The upper panel of Fig. 11 looks similar to what Kob a
Andersen reported for their results on a binary mixture@11#.
In particular, we also finda2 to be larger for smaller par
ticles; the maximum increases from 1.0 to 1.2 ifds is de-
creased from 0.6 to 0.5. The clustering of thea2-
versus-log10t graphs on the critical curve, labeledc in Fig.
11, and referred to as a scaling law in Ref.@11#, becomes
better fords50.5 than for the result shown fords50.6. Let
us emphasize that the results found are not universal feat
of the MCT bifurcation dynamics. The apparent scaling
disturbed ifds increases above 0.6, and it is predicted to
absent fords51.0 as is shown in the lower panel of Fig. 1

It was shown by Kobet al. @42# that thea2 peak is pro-
duced by clusters of particles which move faster than
ones in their neighborhood. Only as few as 5% of all p
ticles are involved in the formation of these clusters. It wou
be very surprising if the MCT, which works with average
quantities like Fq(t) and Fq

s(t), could reproduce such
subtlety of the microscopic dynamics. This would hold ev
more so if speculations on a relation of the cited clus
dynamics to polymer dynamics@43# could be substantiated
On the other hand, the features of the fast clusters identi
so far are not in obvious contradiction to the idea that th
are representative configurations building up backflow p
terns. Moreover, the MCT equations for structural relaxat
were originally proposed and tested against experiments
a treatment of backflow phenomena@44#. Obviously it would
be helpful to carry out a first-principles MCT calculation
a2(t) for the cited binary mixture along the same lines
done in this paper for the hard-sphere system. Thereby
could clarify whether or not the qualitative agreement b
tween the hard-sphere-system results fords about 0.6 with
the simulation results in Ref.@11# is just an accident.
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