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Asymptotic laws for tagged-particle motion in glassy systems
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Within mode-coupling theory for structural relaxation in simple systems, the asymptotic laws and their
leading-asymptotic correction formulas are derived for the motion of a tagged particle near a glass-transition
singularity. These analytic results are compared with numerical ones of the equations of motion evaluated for
a tagged hard sphere moving in a hard-sphere system. It is found that the long-time part of the two-step
relaxation process for the mean-squared displacement can be characterized fglthetion scaling law and
von Schweidler's power-law decay, while the critical-decay regime is dominated by the corrections to the
leading power-law behavior. For parameters of interest for the interpretations of experimental data, the cor-
rections to the leading asymptotic laws for the non-Gaussian parameter are found to be so large that the leading
asymptotic results are altered qualitatively by the corrections. Results for the non-Gaussian parameter are
shown to follow qualitatively the findings reported in the molecular-dynamics-simulations work by Kob and
AndersenPhys. Rev. E51, 4626(1995]. [S1063-651X98)09609-3

PACS numbd(s): 64.70.Pf, 61.20.Lc

I. INTRODUCTION lar liquids with an incoherent scattering cross section such as
orthoterpheny[17,21] probes its spectrum. For a glassy col-
Mode-coupling theoryMCT) for the structural relaxation loidal suspension the correlator has recently been measured
of glassy liquids[1,2] has provided explanations for long- by dynamic light scatterin§22]. From measurements of the
known phenomena, such as, for example, the stretching aficoherent intermediate scattering function for small wave
the a process, the time-temperature superposition principleyectors, one can extract the mean-squared displacd2®nt
and the von Schweidler law. It has also predicted new phe24] and, in principle, also information about the non-
nomena such as a square-root singularity in the temperatuf@aussian parameter. In computer simulations the tagged-
dependence of the Debye-Waller factor and the critical departicle correlator is a preferred quantity—compared to the
cay. For details, the reader is referred to RE8s4] and the  coherent density fluctuation function—due to statistical ad-
papers quoted there. The universal features of the MCT ariseantages. The mean-squared displacement and the non-
as leading-order results near a bifurcation singularity, whichGaussian parameter can also be directly extracted from com-
was identified as an ideal glass transition—in reality smeareg@uter simulation datpl1,25. The reported simulation results
out due to additional relaxation processes. These theoreticfdr the non-Gaussian parameter challenged the universal fea-
findings also provided some motivation for a number of ex-tures predicted by MCT. Within the accessible simulation-
periments focusing on the evolution of structural relaxationtime window, the non-Gaussian parameter showed no signs
in the vicinity of the predicted glass-transition singularity of the predictions of a two-step relaxation process nor of the
(see Refs|5-17] and the papers quoted thertn turn, these time-temperature superposition principle, even though other
experiments sparked off new theoretical developments suctlynamical quantities such as the intermediate scattering
as the derivation and discussion of next-to-leading-ordefunction, self-intermediate scattering function, and mean-
asymptotic results in the vicinity of the bifurcation singular- squared displacement fitted into the picture for glassy dy-
ity [18], and the extension of the theory to liquids consistingnamics drawn by MCT.
of or containing nonspherical moleculgt9,2(. Using the To proceed, equations of motion will be derived for the
coherent intermediate scattering function of a hard-sphermean-squared displacement and the non-Gaussian parameter.
system(HSS as an example, the preceding w¢d8] illus-  The relaxation kernels in those equations are given by mode-
trates how asymptotic corrections explain the deviation frontoupling functionals, which require correlators of the density
the leading-order results, and shows how general propertieand the tagged-particle density as input. For the latter, pre-
of these corrections may be included into a quantitativeviously derived MCT equationg2] are used. Then an
analysis of experimental data. Due to the presence of addasymptotic expansion of the solutions will be carried out. All
tional amplitudes and a new second-order scaling functiorequations will be solved and studied in quantitative detail for
many features of these corrections are different for differenthe model system of a tagged hard sphere immersed in a
observables, used for the description of the glassy dynamic§lSS. The HSS has already been the subject of a number of
Therefore, we intend to extend the previous work to a distheoretical investigations, as can be inferred from Refs.
cussion of the conceptually simplest functions characterizing18,26 and the papers quoted there. Its importance stems in
the dynamics, namely, the density correlator of a tagged papart from the fact that it is the simplest system for which a
ticle and its special limits, the mean-squared displacemenglass transition has been detected experimen{&|9,27,
and the non-Gaussian parameter. thus providing an archetype for quantitative tests of the
The tagged-particle density correlators can be measuretieory. Comprehensive comparisons between MCT results
by a variety of techniques. Neutron scattering from molecufor the evolution of structural relaxation and the correspond-
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ing experimental findings obtained by dynamic light scatter- At a critical densityn. the above equations exhibit a bi-
ing for hard-sphere colloids were published in Refs.furcation in the long-time limitsf,=Ilim_ .. ®4(t) of the
[8,9,28,29. In the data analysis, two numbers enter as fitdensity correlators. The bifurcation singularity can be iden-
parameters: a time scatg, given by the viscosity of the tified with a liquid-glass transition: At., the Debye-Waller
solvent, and the critical packing fractiap.. The predicted factorf,, also called the form factor, jumps from zero to the
value for e [2] differs from the experimental value by about critical from factorfg>0. The instability of the glass fan
12%. Here, as in any other test of a singularity theory, data-n_+ is reflected by a square-root singularity of the Debye-
have been studied as a function (_)f the _distamee(-go Waller factor;fq:fa+ hq‘/g/(l_)\)Jro(U)_ Here,oc=Cse
—¢c)/ ¢ from the positiong. of the singularity. The cited s called the separation parameter,96<1 is the called
tests have been summarized as folld®6,31): the leading  exponent parameter, anuq:(l_fa)29q>o denotes the
asymptotic MCT results account for data within the experi-critical amplitude. The quantities,, \, and the constant
mental uncertainties for the liquid states<{0) and also for ¢~ ¢, relatings and the reduced densigy=(n—n./n., can
the glass states:(~0). This does not only hold for universal pe cajculated by straightforward formulas from the func-
formulas like the scaling laws. It also holds for the numericaljgng| 7 [3].

values predicted for the exponents, the master functions en- vjja 5 simple transcendental equation, the exponent pa-
tering the scaling laws, and for the various wave-Vectoryameter determines two anomalous exponents: the critical
dependent amplitudes. Therefore, it seems justified to illusgyhonenta, 0<a<0.5, and the von Schweidler exponent
trate our theory for the tagged-particle motion in a HSS. Thg, 0<bsi. Furthermérek fixes a constanB>0. There
cited and tested results for the density dynamics will enter a3ppears a single tintg, specifying the scale for the transient

input taken from the preceding wofi8]. But the HSS is  qynamics. The bifurcation dynamics is then ruled by two
also relevant because its dynamics shares many features Witlkical time scales. denoted ly andt’ :

other simple systems, as will again be demonstrated in this

paper. _ : o t,=tol|al’, t,=teB™*/|a]?,
The paper is arranged as follows. After briefly reviewing
the basics of the MCT glass transiti¢8ec. 1) we start by 1 1 1
discussing the properties of the tagged-particle density cor- 6=, Y=+ =—. 2

relator in Sec. lll. Section IV covers the mean-squared dis- 2a 2b

placement and itfs as_ymptotic behavi_or. The _quality of t_hel'he mathematical relevance of these concepts is evident
Gaussian approximation for the self-intermediate scattering.,,  he following  limit results [3].  First

function of the HSS is assessé8ec. V), before turning to gmf_>0|im0_>o{[<bq(ftg)—fg]/\/m}fa= hy. Thus, near the

the non-Gaussian parameter in Sec. VI. In the conclusion w 0 he Dl e | hed b
will summarize our results and suggest how some recent effansition, the plateau valug; is approached from above

periments and simulations on single-particle quantities ca@ccording to a power law, called critical decay,
be interpreted.

Oq(1)—fa~hg(to/1)?,  to<t<t,. (3
Il. IDEAL MCT GLASS TRANSITION Second,
The idealized MCT deals with the structural dynamics |im |im [Dy(Tt])—fE1/EP=—hy=lim lim {[dy(it,)
of simple liquids, consisting ofN particles at positions 7 g0—0- o f w0 —0—
Fj , J=1,... N. A self-consistent treatment of the cage ef- c b
fect, which is thought to be the reason for the glass transi- _fq]/V|‘T|}/t :

tion, leads to a closed set of integrodifferential equations for

. % ) . Near the transition the plateau vaIt@is left in the liquid
the densn_y correlat_(}ibq(t) _<pq (O)pq(.t)>/5 ' |.e.,_the al state according to a power law, called von Schweidler decay:
tocorrelation function of the density fluctuatiop(t)

= (LWN) = exfiq-r;(t)] for wave vectorg, normalized by Do)~ fi~ —hy(t/t,)°,  t,<t<t]. (4)

the static structure fact(ﬁq=<p§(0)pd(0)>; (') signifies H q ical ina | d ibing the bi
an average with respect to the canonical ensemble,gand ere are two dynamical scaling laws describing the bi-
furcation dynamics near the transition in a leading-order

=|q| abbreviates a wave-vector modulus. Specializing to &gymptotic limit. The first one describes the dynamics on a
colloid model, the MCT equations of motion read scale t, CDq(t)—fg~th(t). Here G(t)=(ty/t)® for

t =0, and
TinDq(t)+(Dq(t)+fomq(t—t’)ci)q(t’)dt’zo. (1) G(t)=\To]g. (t/t,), =0, ®)

- . _ n The o-independent master functiorgs. are determined by
They are specified by the timeg=S,/(Doq") with Do de- ) " They describe the crossover from the critical decay

noting the single-particle diffusion coefficient. The memory - _° =, . SN 1T
kernel in this equation is given as a mode-coupling func-gi(t<1)_1/t to arrest in the glasg. (t>1)=1/y1-1,

tional my(t)=F,(®(t)), where F, is determined by the or toAvon Schyveidler’s decay in the liquidg_(t>1)
structure factoiS; [2], which depends smoothly on external = —B1t°+B,/(Bt). The result is obtained by solving the
control parameters such as the density MCT equations usin¢<l>q(t)—fg| as small parameter. This
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is equivalent to writing=ft‘, and then expanding in powers =exr{id-F(t)]; r denotes the position of the particle. For a
of the small parametey|o|. Pushing the expansion to next- system driven by Brownian dynamics the MCT equation of
to-leading order extends the first scaling-law result to motion reads

D (1) =S +heG(t) + he[H(t) + KG(1) >+ oR,].  (6) Tgég(t)+q>§(t)+f;mg(t—t')cbg(t')dt'zo, )

Here two further amplitudek, and Rq, and a new function

H(1), appear. The latter obeys scaling lawd(t)  with 75=1/(D3g?). HereD} is the short-time diffusion co-

= k(a)(to/t)?® for o=0 andH(t)=|olh.(t/t,) for 0=0. efficient of the immersed particle. The memory kemel

All these quantities can be evaluated from the mOdeTn'g(t)=.7-"Z(<I>(t),<DS(t)) is expressed through the mode-

coupling functional 7y as is compreﬂensively explained in coupling functional S, where not onIy(I)fl(t) but also

Ref.[18], where we changed notatidf to Rq. The domain ~ ®(t) enter:

of applicability of expansion(6) is called theB-relaxation

window, and correspondinglg andt, are referred to as the

B correlator andg3-relaxation time scale, respectively. 1 ) ﬁlz 2
The second scaling law describes the liquid dynamics on Fo(f.19)= 5 3j nSci’| = | fif

scalet, . It deals with the decay of the correlator from the (2) q

plateau to zero, and it is based on the relation

“moﬂg—?q(ttfr):‘bq(t)- Here the o-independent func-  Here c3=(p3*(0)p5(0)>/(nsq) denotes the single-particle
tions ®4(t) are the solution of the implicit functional equa- direct correlation functiofi2].
tions To solve Egs(9) and(10) numerically, we proceed as in
Ref. [18]: The mode-coupling functional is rewritten in bi-
T~ = , e o~ = polar coordinates by change of variable, and the two remain-
fo[mq(t )~ ®q(t)]dt :fo Mg(t—t)@q(t")dt". (7)  ing integrals are approximated by Riemann sums

ogdik (10

The kerneIan(Y)=fg(5>(T)) is the mode-coupling func- 905 95
tional at the transition point, and the equation is to be solved ]-'z(f,fs)=nA3/(16d3w2)A2 > s(kp/g®)(k2+q?
with von Schweidler’s law as an initial condition. Near the k=1/2 p=1/2

transition within the windowt ,<t this implies, in leading -

order, S R P (11)

Dy(t) = Dg(t/t,). ®  The prime indicates that the sum runs only over those values
p for which k, p, and q obey the triangle inequality.
This window is referred to as the regime,t is called the  Thereby, we again obtain a precisely defined tagged-hard-
a-relaxation time scale, and E@) is the superposition prin-  sphere-particle model described by 100 coupled integrodif-
ciple for thea process. ferential equations fo(t) on a grid of 100 equally spaced

Every theory dealing with the dynamics of a variablas wave numbersq:AE{ with a:; ...,99 and step size
a probe of structural relaxation in glassy systems relies on aR_g 4. 2 '
understanding of the dynamics of density rearrangements. The substitution of Eq(11) for the mode-coupling func-
Hence a microscopic theory will require results fg(t) as tional (10) might seem rather crude. However, we have
input. For.the following discussion it is therefore necessary.packed that the results seldom differ by more,than a few
Vﬁercent from those obtained with 300 or 900 grid points for
he Riemann sum. Only at small wave numbers do qualita-
ive changes occur due to bad angle resolution; however,
hese do not influence other wave vectors because the major
contributions to the integral in Eq10) come from the wave
vectors near the structure-factor-peak position.

In our application to the HSS, the static structure fapr
and the direct correlation functioqj are calculated in the
Percus-Yevick approximatidiB2]. Assuming short-time dif-
fusion according to Stokes’ law, which entaiB§/Dy
=d/d®, only two control parameters remain: the packing
IIl. TAGGED-PARTICLE DENSITY CORRELATOR fraction ¢ of the host particles and the diametdt of the
tagged particle. All results for the coherent density correla-
tors @ 4(t) of the HSS, which will be needed in the follow-

The dynamics of a tagged particle is explored by its dening, will be taken from the solution of Eq1) discussed in
sity correlator ®3(t)=(pg" (0)pg(t)), where pZ(t)  Ref.[18].

They were explained and illustrated in REf8] for the HSS. t
The quantitative examples of the following discussion shallt
also be done for that model. We follow the previous conveny
tions by using the particle diameteras unit of lengthd
=1, choosing the time unit so that the short-time diffusivity
Do= 155, and using the packing fractiop= wnd®/6 as the
control parameter. In this case one obtains=0.516,C
=1.54, A=0.735, a=0.312, b=0.583,B=0.836, B;
=0.431, and(=0.425.

A. Equation of motion
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15 20

q q
FIG. 2. Same as Fig. 1 for a tagged particle of diameter

FIG. 1. Critical Lamb-Mssbauer factorfy® and amplitudes 06

h;, Ka, and Ka, obtained from Eqgs(12), (15), and(17), for a
tagged hard-sphere patrticle of diametés 1.0 immersed in a hard- . . . s
sphere liquid. The solid lines are the Gaussian approximations, Eqirough the glass-transition singularigy,. For d°=0.6 the
(31). The arrows indicate the wave numbemp=3.4, g, particle still becomes trapped at., but the f3*-versusg
=7.0, ,=10.6, andy;=17.4. The dotted line in the upper panel is graph is narrower than befofesee Fig. 2 This means that
one tenth of the structure factor at the critical pdzampare Fig. 3  the center of the smaller particle can explore a larger volume.
in Ref.[18]). Here and in the following figures the diameteofthe ~ Reducing the particle sizel® further, the system passes

host particles is chosen as the unit of length. through a percolation threshold at some critical diametér
In the following we will only be interested in tagged par-
B. Critical Lamb-Mg ssbauer factor ticles with diametersd®>d®®, for which the Lamb-

The trapping of a tagged particle by its surrounding hOS{\/Iossbauer factor shows the generic fold bifurcation.
particles manifests itself by a nonvanishing Lamb-
Mossbauer factofg=lim,_..®g(t). From Eq.(9), one finds C. Asymptotic laws

.. .
[2] that f; is a solution of 1. B relaxation

fa Close to the bifurcation, the correlatofba(t) show a
— S S . . .
T =Fq(f,12). (12)  characteristic two-step relaxation process, as can be seen in
q Fig. 3. In Ref.[4] it was discussed, and in RdB5] it was
demonstrated for relevant examples, that the long-time be-
It is distinguished from other solutions of E(L2), say?é, havior of correlators, which are the solutions of MCT equa-

by the maximum propertyfs=T% [3]. It can be found by tions such as Eqs1) and(9), is determined by

the iteration f§=1lim, _..f3X"™, where f{""1/(1—f3"1)

= F3(f,15M), =1 [33]. Obviously f=0 implies f D3(s) . .
=0, but not vice versa. The spatial Fourier transfditfr) 1-sb3(s) =LLF (P (1), D%(1))](s). (13
of the Lamb-Masbauer factor is the probability of finding 4

the particle fort=o0 at distance from where it started for

t=0. Therefore, a particle cannot be trapped as long as thdere ®g(s) denotes the Laplace transformb(s)

host particles are in a liquid state. But even when the host L[®(t)](s):=[pe” S'®(t)dt of CDZ(t). These equations

particles are in a glass state, the tagged particle may still bdepend only on equilibrium quantities via the static structure

able to diffuse in the arrested structure. The various scenaridactor. They are therefore independent of the microscopic

arising from Eqgs(12) and(10) have been discussed before dynamics and any additional regular contributions to the ker-

(compare Ref[34] and the papers cited there nelsmg(t) and ma(t). Consequently, it makes no difference
For a tagged hard sphere of diametér1.0 the Lamb-  for the asymptotic results discussed throughout this paper

Mossbauer factor jumps from O to the critical valt1§> 0, that we chose Brownian instead of Newtonian dynamics, and

which is shown in Fig. 1, when the packing fractiprpasses omitted regular contributions to the kernels.
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10 Taylor coefficients of the mode-coupling functional are in-

=7 ] troduced by
0.8 &0 d*=1.0
O 12 1 S __(~SC
~ ‘ Capypy k= Capypy ook

06 s 2

s +0C5p, . kyorrk &+ 0(e?)
e<0
“H 11 IFYFC)
! [
0z | [' n! m! (?fp1~--ﬁfpn<9fkl---<?fkm
=0\ 3\ A\ 8 \ NN X(l_fztll)Z...(l_f'S)t;)Z
0 2 4 6 8 10
log, .t X(l—fﬁl)2~~~(l—fﬁm)2. (16

FIG. 3. Self-intermediate scattering functidri(t), calculated For the derivation of these general formulas, we made no use
from Egs.(9) and (11), of the HSS @°=1.0) for wave number 9 !

_ . - ; _ of the linearity of the mode-coupling functional fnand f*.
ili I(')qn/?’t V\\,/r?:rc;f: (r)educelci E’rérl;kltf;]?Ckfr?uC:\lloeﬁIS;b(jedg)]éfvcs Figures 1 and 2 exhibit the HSS results for the amplitudes for
the dynamics at the critical packing fractian=0.51592 ... . the two diameters®=1.0 andd®=0.6, respectively. Follow-
The uppermost curve refers to the packing fraction0.6. The NG Ref.[18] we show
arrow marks the time¢,=0.425. Here and in some of the following .
figures the full dot and square mark the tintgsandt. , respec- Kag=KgV1—- N+ K/ V1I-N—xk+h (®)y1-N (17)
tively, for e=—0.001. On the glass side>0) the curves fom

=13 and 14 are omitted since they would be barely distinguishablgnstead ofKS, wherex=0.961 andh, (=)= —2.21 for the
from curvec. Then=0,1, and 2 glass curves are omitted, since theHSS. 9

Percus-Yevick approximation produces negative values for the pair Equation (14) for the tagged-particle correlator is for-

dist_ribut_ion function fpr su_ch h_igh densities. Here and in the.f0|-mally identical to the above expansic8) for the coherent
I(?imr;?ozg:;:fsﬁ::nfg?t?}:'rzzzt's;Ezlseesnrzl;;h ih‘l”he Short't'me-density correlator. This reflects the universality of the
P 8= Teo- asymptotic features of the MCT. Within th@-relaxation
| g th ) i) into Eq.(13 ) window the dynamics is fixed by thg correlatorG(t) in
Tayrlljﬁglt?lgef)rgrﬁsgrmgtﬁsggi:rz)sdﬁnlgt?ungfii)ﬂ‘;i uzzg leading order, and b@ andH in next-to-leading order in an
= M e e asymptotic expansion. Correlators referring to different prob-
collecting like-order terms, one obtains, in leading and nexting variables merely differ in the various amplitudes such as
to-leading order, (5,159, (hq.h3). etc. These amplitudes do not depend on
time or on control parameters. However, there are rather im-
(1) =5+ h5G(t) +hi[H(t) + KEG(t)*+ URZ]. portant differences for the procedure to determine the ampli-
(14)  tudes reflecting the fact that the bifurcation in the tagged-
particle dynamics is brought about by the bifurcation in the
Here the critical amplitudég= (1 f;°)?e; for the tagged- host-particle dynamics. The amplitudeg, K, and Kq, for
particle correlator and the correction amplitudedand K the cage-forming particles are the solutions of singular ma-
are to be calculated from trix equations and the solubility conditions in second and
third orders of the asymptotic expansion determine the scal-
ing functionsG andH up to a single time scalk,, which
> (Sqk— aﬁ)eﬁzz CiCex, (159  has to be matched at the critical poji8]. By contrast, the
k k ' positive matrixczﬁ has a spectral radius smaller than unity
[33]. Hence, the matrixdq,— Cyy is regular, and the ampli-
o sis I “ tudes are uniquely determined by solving the linear equa-
Ek (Sgk— CareK=—(1-1fg)ey 7\+; Ca.kexKy tions (15). The scaling function& andH are solely deter-
mined by the properties of the host particles. The interaction
potential of the tagged particle enters the Lambsstmauer
+2k Ca;ke?)e§+ 2k Ca,cpkepek factor, and the amplitudes via the direct correlation function
P P ca, which is hidden in the Taylor coefficient46). No fur-
sc s ther time scale needs to be fixed. Even a change of the mi-
+;< Cap. k€€ (15 croscopic time scales; in Eq. (9) would not affect the time
' scale of the asymptotic behavior. One can always go so close
to the critical point that Eq(14) holds within a prescribed
_ (~SC\ASIZS_ _ (1 _ §£SC\4S2 s error margin.
; (Oqi— Caueikic=— (1 fg)eqg + oC4/C The first two terms on the right-hand side of E#4) are
known as the factorization theorem: If the density correlators
T 2 Cackekkk- (150) are rescalgd accgrdingly, Fhe curves qollapse ont¢tleer-
K ’ relator G in an intermediate time window, the so-called
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number fall below the curves with larger wave number.
Sincex(a) + Kz changes sign betweeayy andqs, curves 0,

1, and 2 fall below and curve 3 is above the dashed asymp-
tote for t<10. On the liquid side the analogous formula
D3(t) =3~ h5t*{1—[ x(—b) +KS]t®} provides the expla-
nation for the deviations from the von Schweidler asymptote
[Eq. (4)] at later times: they dependence of the deviations is
again determined by the amplitud@. Thus if one curve
lies above the other when deviating from the factorization
theorem at short times, it will also do so at long times. This
rule, which was already discussed fdr,(t) in Ref. [18],
holds for all quantities that asymptotically obey Ety). For

the HSS one obtaing(—b)=0.569[18], and therefore Fig.

1 implies thatk(—b) + Kg changes sign between andq,.

This explains why curves 0 and 1 are below, and curves 2
and 3 above, the dashed asymptote in Fig. 4 fogeg6.

On the glass side the long-time behavior@ﬁ(t) is de-
scribed byf§=f3*+h3Vo/(1=N)[1+ Vo (K3 + x)].

Armed with Fig. 2 and what was explained fbt= 1, it is
easy to infer what Fig. 4 would look like for a hard sphere of
diameterds=0.6. Since it was already explained in Rgfg]

log, ;t how the deviations from the leading order translate into the
frequency domain, spectra shall not be discussed in this pa-

FIG. 4. Upper panel: Rescaled self-intermediate scattering funcper.
tion ég(t):(mg(t)—fg")/hg (solid lineg of the hard-sphere system In order to discuss the quality of the asymptotic expan-
(d®=1.0) for four different wave numbers at reduced packing frac-sions in a controllable manner, some convention for the error
tion e=(¢— @)/ .= =10 "3 with n=9, showing collapse onto margin has to be made. There are various possibiliti&s
the B correlatorG [dashed lines, Eq5)] in the B-relaxation region.  In this paper the range of validity shall be defined as the time
On the extreme left and right, small numbers near each curve indivindow where, for a given valué of the correlator, the
cate the wave numbergy, qi, qz, andqs, marked in Fig. 1. time t4, for the solution,® =®(ty), deviates from the time
Lower panel: Rescaled intermediate scattering functi@f) and tf{f for the asymptotic expansion, s§y=f§+ th(tca[ﬁ- by

self-intermediate scattering functiot®ISPH for wave numberqg, less thars percent. This definition can always be applied to

=10.6 atn=10, compared to th@ correlatorG. The glass curves . . . . . . .
(¢>0) are shifted downward by 1 to avoid overcrowding. The monotonic functions of time, in particular to functions in the

open symbols mark the boundaries of tBeaelaxation region as B-relaxation window. If one chooses so small that the

defined at the end of Sec. Il C 1. Some symbols are missing bedeviations from the leading order are quantitatively ex-

cause they are either outside the display rafige long-time part of ~ plained by the leading corrections, the range of validity for

the liquid curve forg;) or the range of validity is nonexistedlass  the leading-ordeB-relaxation asymptote can be shown to

curves forqo, q;, andqy). expand with the3 time scalet,, for c— 0+, and with thea
time scalet] for c—0—. In Fig. 4 and some of the follow-

B-relaxation region, as demonstrated in Fig. 4 for four waveing figures, the end points of the time intervals with

numbers. Obviously, thg-relaxation region depends on the =20% are marked by various symbols.

wave numbefupper panglor—put more generally—on the

guantity under consideratidiower pane). This is accounted 2. & relaxation

for by the twog-dependent amplitudes; and Rf] occurring

in the leading correction to the factorization property. The s . e
window expands as the system moves closer to the criticarFlator(Dq(t) obeys the superposition pr|n0|£)le as formulated

point, as demonstrated by a comparisondmj(t) for q, in Eq. (8) for the d.ensr[y correlatord)f‘(t)=<I>§(t/£[,)'. The
=10.6 forn=9 and 10 in Fig. 4. More can be said if we control-parameter-independent master functgj(t) is ob-
consider that the dominant corrections are the short-time cofained from Eq.(7), where only superscripts have to be
rections to the critical law3), and the long-time corrections added to correlators and kerné¢g.

to the von Schweidler la4) or the corrections to the Lamb-  In Fig. 5, various rescaled correlatebs(t) are compared
Mossbauer factorfz on the liquid (¢<0) or glass(s>0) to the @ master function. The superposition principle best
side, respectively. The short-time expansion of the rightdescribes thex relaxation for later times. As the glass tran-
hand side of Eq.(14) is given by f3+h5(t/to) {1 sition is approached from the liquid side, the range of valid-
+[K(a)+K§](t/t0)‘a}, so that the factov<(a)+K3 deter- ity of the superposmgn principle, which is mgrked by dia-
mines the sign and strength of the leading correction to thg'0nds and defined in analogy to tiferelaxation regime
critical decay. For the HSS one obtairéa) = —0.002[18] above, extends to earlier rescaled time£lose to the criti-
and K§< K; for g<p (compare Fig. 1 This explains in cal point, the deviations from the master curve can be
particular why at early times the curves with smaller waveunderstood in terms of the leading-order correctﬁﬁha(“f)

Within the a-relaxation window, the tagged-particle cor-
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t
Sr3(t)+ DSL m©@(t—t")sr2(t’)dt’=6Dgt. (19

Here we have introduced the kernelm(©(t)
=Iimqﬁoq2m3(t). Carrying out the limitg—0 in Eq. (10),

one finds the representation of the new kernel as a new
mode-coupling  functional, m(©(t) = Fsp(P®(t),P(t)),
where

XQ

o

1 o)
Fusp(f,1)=—— f nSci?kf fodk. (20)
6m2Jo

Again this integral shall be rewritten as a Riemann sum over
the previously introduced wave-vector grid of 100 terms:

-4 -3 -2 -1 0 1
log, t/t, ’

FIG. 5. a-scaling plot of the self-intermediate scattering func- 995

tion: d(t), taken from Fig. 3, for reduced packing fractioas fMSD(f-fS):[nAS/(GWZ)]AE SkCEZkAfkfi- (21)
=(¢— @)l oc=—10"3 n=1,357, and 9, vs rescaled tinte k=172

=t/t, . The thick solid line is thex master functiorrbi(?). The Two side remarks concerning the preceding formulas
diamonds mark the early-time bound for thescaling reg~ime~ as might be of interest. First, instead of solving E49) with
defined at the end of Sec. Il C 1. Ihe dotted line indicabg¢t) ®4(t) and q)z(t) as an input for the determination of the
—oh;B4t°, which includes the smali-correction according to Ed.  kernel m(®, one could obtain the desired result directly as
(18). the small-wave-vector limitsr?(t)=6 Iimqﬁo[l—CDf}(t)]/

) o i ~ o~ g% We have studied this procedure, and checked the result
to the a-scaling law, which is linear inr: ®o(t)=®4(t)  to be the same as obtained from E(E9) and (20). How-
+ 5®§(T)+O(02) [18]. Although the equation governing ever, to do this, we had to use more than 100 grid points for

the time evolution ofs®3(t) is rather involved, its short- the Riemann sum, and extrapolate carefully from st
time behavior can be expressed in terms of the amplitudegero. This is necessary, since the discretization in(Ef).is

introduced above in connection with tigerelaxation. Up to 00 crude to produce reliable results for very smllsay
errors of orderst?. one obtains g=A or 2A. However, after carrying out the smajl limit

for g?mj(t), the discretizatiori21) of the integral in Eq(20)
SD3(1)=— oh3{B;T P+[x(—b)—2B,;K3—K23]}, is harmless since the major contributions come from the in-
I a 4 (18  termediate wave-vector domala-7. This reflects the fact
that the sluggish dynamics of the tagged particle is ruled by
with k(—b)=2.97 for the HSJ18]. The't ° term, which  the cage effect, i.e., by structure correlations on length scales

diverges forf—0, dominates the deviations fromscaling ~ ©f the interparticle distance.

for small|o|. Consequently, asymptotically close¢g, the Second, there is a trivial réelation betweér?(t) and the
deviations occur at short times, where thenaster function Velocity correlation functiork*(t). Equations(19) and (20)

is described by von Schweidler's lai). Therefore, thd are equivalent to the MCT equation discussed earlier for

window for th lina exoands to smaller r led tim KS(t) in the Laplace domaif8]. Following this route 5r2(t)
owfor thea f,cz‘,”‘ g expands to smafler rescaled Umes, ¢ haap evaluated previously for some representative pack-
proportional to|o|*?. For small|o|, the a-relaxation win-

. ) ) ing fractions for the HS$26]. We prefer to solve Eq(19)
dow becomes independent of the correction amplitudgs  irectly, since thereby we need not worry about a careful
andK3g, and thus independent of the observable under cormandling of the strong smadi- divergency exhibited by
sideration, because the observable-dependent amplhﬁlde L[ 6r2(t)](s).
occurs as a prefactor to both von Schweidler’s law and the

relevant correctiort ~°. The dotted line in Fig. 5 illustrates B. Diffusion-localization transition
. . > S i .
how the .deVIatIOI’ISSCI)q(t). from theo_‘ massteerchtlon can In order to understand that the ideal liquid-glass transition
be described by the leading correctierrh Bt ™", implies a transition from particle localization to particle dif-
fusion, let us remember that the Fourier back transform
IV. MEAN-SQUARED DISPLACEMENT dS(r,t)=(S(r—[r(t)—r(0)])) of the tagged-particle den-

sity correlator from the wave vector to the displacement do-
main is the probability density for finding at tintethe par-
The equation of motion for the mean-squared displaceticle in a distance from its starting position. In the glass this
ment (MSD) &r2(t)={|r(t)—r(0)|?) [36] can be obtained distribution levels off for long times at the normalized dis-
from Eg. (9) by exploiting its relation to the small-wave- tribution f3(r). Hence the tagged patrticle is localized in the
number behavior of the tagged-particle density correlatoglass matrix. A characteristic localization length can be
dy(t)=1—q>or?(t)/6+0(q"): defined, for example, in terms of the smallimit of the

A. Equation of motion
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valuerg.. The critical valuer,.=0.0746 fits nicely to the
Lindemann melting criterion, as already noted in Refl.
The liquid curves intersect the plateny for times of order
t,; the timet, is indicated for then=9 curve by a dot in
Fig. 6. Then they leave the plateau according to von Sch-
weidler's law in order to cross over to the diffusion limit
Sr?(t)=6D5t for times large compared tt,. For then
6 =9 curve, the latter asymptote is indicated by a dotted line
2} I &0 1 in Fig. 6, and the time is marked by a full square on the
graph. The increase afr2(t) above 6§ is the o process of
¢*=1.0 the mean-squared-displacement dynamics. It deals with the
tagged particle’s leaving of the cage. The initial part of this
3¢t L process, wheresr?(t) is close torgc, is stretched over a
0 2 4 6 8 10 large dynamical window ife| is small. For times of order
log, t 20t/, &r?(t) has increased to about unity; then stochastic
dynamics sets in andr?(t) follows the diffusion asymptote.
FIG. 6. Mean-square displacemefit?(t), obtained from Eqs. Between the end of the regular short-time transient and the
(19) and(21), for the hard-sphere systerdS& 1.0) at various pack- start of thea process, there is a mesoscopic window for
ing fractions. The solid curves are labeled as in Fig. 3. The straighanother anomalous dynamics. It deals with the stretched ap-
dotted line with unit slope indicates the long-time-diffusion asymp-proach of 8r2(t) toward the plateaur§. In this sense the
tote (6D°t) for then=9 liquid curve. bifurcation dynamics, i.e., the dynamics outside the transient,
deals with a two-step relaxation process. Asymptotic expan-
Lamb-Massbauer factorf§=1—(qrs)2+ O(q%. This fixes  sions shall be used to describe the bifurcation scenario by
the long-time asymptote of the mean-squared displacememhalytical formulas, thereby providing an understanding of
for ¢>0: Fig. 6.

n=0 3 [

e<0

e

lim &r2(t)=6r2. (22)

t—oo

C. Asymptotic laws

1. B relaxation
Obviously, 6r2(t)=f®(r,t)r?d®, so that &2
= [fS(r)r?d®. Equation(19) yields the general formula for
rs in terms of sums over the glass form factf8s$

An equation connecting the Laplace transfordrg(s)
andm(®(s) of &r?(t) andm©(t), respectively, within the
structural relaxation regimé>t,, follows from Egq. (13):

(2= 1/ Tl f.F9). 23) s_érz(s)=6/[sm(°)(.s)]. By inserting the asymptotic expan-
sions(6) and (14) into this equation, one again obtains the
In the liquid state the low-frequency behavior of the Laplacegeneral result for thg8 relaxation to next-to-leading order:
transform of all correlation functions and kernels is smooth 5 5
[33]. Therefore, from Eq(19) one derives the well known oro(t1)/6=r5c— hyspG(1)

formula for the linear divergency in time: -
gency —hyspl H(t) + KuspG(t) 2+ oKyspl.  (26)

lim 8r?(t)/t=6DS. (24

t—oo

Herer2_ follows from Eq.(23) with f and f® specialized to
f¢ and f3¢, respectively, and the other amplitudes read

HereD? is the tagged-particle diffusivity. It is also called the
huso=red Fuso(h, F°9) + Fusp(F€,h%)], (279

long-time diffusivity in order to distinguish it fronDg,

which determines the short-time asymptote ligdr 2(t)/t (4
— S . . . s
= 6DOS. From Eq.(19) one readily derives for the ratio &f K ysp= . sc [ e, h®) + Fep(hK, F5°)
andDg: MSD
s hMSD
D_S: j _ (25 + Fospl F6,h°KS) - A—, (27b
SC
Do 14 Dgf mO(t)dt
0 4
. re. | 0Fusp(f6, 159 N
. o . L + Fysp(K, %9
Note that this ratio is less than unity, which is an obvious husol Coe
manifestation of the cage effect. h
Figure 6 exhibits the evolution of the bifurcation dynam- +mSD(fC’hSRS) _ Mst’ 270

ics as probed byr?(t) for the HSS. For very smatl, one
observes short-time diffusion. With increasing density the
short-time diffusion is suppressed due to the cage effect. Th@here we exploited that the mode-coupling functional
glass curves level off for long times at$. With decreasing  Fuysp(fC,f%9 is linear inf andfS, and introduced short-hand
density the localization length increases up to some criticahotation likehK for (hK),=hyK.

SC
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gD (d'=1.0) <& 0l

1 J
=Y
ks)
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log,t log,o(e -0} o,
FIG. 7. Mean-square-displacement curvé&s(t) (full lines) FIG. 8. Self-diffusion coefficientd? for tagged particles of

taken forn=9 from Fig. 6. The dashed and dot-dashed lines, re-diametersd®=1.0 and 0.6 anck-relaxation rate ¥;° vs the re-
spectively, are the leading and next-to-leading orders of theduced packing fractiore=(¢—¢.)/¢.. The solid lines are the
asymptotic expansion (26) with r2.=557x10 %, hysp  power-law asymptoted(y|e|?, y=2.46). Thea—scaling timer{®
=0.0116, Kysp=—1.23, andK ysp=23.33, calculated from Egs. is defined as the time when the tagged-particle density correlator
(27). The open symbols indicate the range of validity of the first ®3(t), shown in Fig. 3, has relaxed to half of its critical plateau
(¢) and secondO) order formulas as defined at the end of Sec.value f$°=0.760.

Il C 1. On the liquid side the second-order range of validity ex-

tends beyond the displayed range. On the glass side the first-order

range of validity does not exist. The dotted straight line of slope ftm(O)C(T—t’)ﬁ?z(t’)dt’ =61, (29)
unity for small times indicates the short-time-diffusion asymptote 0
(6D5t).

In Fig. 7 the mean-squared displacement is compared tith  the initial  condition Sr2(t)=6[r s+ hyspt”]
the asymptotic results in leading and next-to-leading order O(t?°). The kernel is given by the mode-coupling func-
for a tagged particle in the HSS. The next-to-leading-ordetional at the critical pointFysp and by the density-
result explains the deviations from the leading-order onefyctuation master functionm(o)c(Nt)=f§,|SD(&>(T),5>S(~t)).
The general trend of the deviations is again explained by the The various superposition principles imply coupling of
short-time corrections to the critical law and the long-timene 4.-relaxation time scales or relaxation rates in the follow-
corrections to thg von Schweidler law on the I|qU|q S|de—oring| sensd3]. Let us characterize the long-time decay of the
to the nonergodicity parameter& on the glass side. The yariableA in the liquid by some timer. This time diverges
range of validity is smaller than for any of the vectors  ypon approaching the glass transition: in the leading
discussed in connection with Fig. 4, since the absolute valugsymptotic limit fore—0—, one findsra=Cat’.. All times
of Kysp is larger than of all thk? (i=0,1,2, and ® The  or rates are proportional to each other and follow a power
next-to-leading-order results are a considerable improvemendy specified by the exponent 1/7a=TAl¢|? [Eq. (2)].
over the leading ones: On the glass side, the second-ordghe constants of proportionalit¢, or I'y depend on the
range of validity extends over almost three decades, whilgariableA and on the precise convention for the definition of
the first-order range—as defined at the end of Sec. Il C 1— The scale coupling or-scale universality is demon-
does not even exist. On the liquid side the next-to-leadingirated in Fig. 8, where the diffusion coefficients of hard-
order adds about a decade to the short-time side of the ranggnere particles of diametedS=1.0 andds=0.6, and the
of validity. It extends it beyond the boundaries of the ﬁgurea—scaling rate 175 of the density fluctuations for wave vec-

on the long-time side. However, this happens in part by aC, ¢, are compared to the asymptotic predictions. Although
cident b_ecause the expon_ent of the §ec0nd tertfy (2b the asymptotic behavior is the same for all the quantifies,

=1.16) in the von Schweidler series is close to the exacl,, ys— (g already deviates visibly from the asymptotic re-

long-time exponent, given by the diffusion lawR&t). sult for n=4, while the other quantities start to deviate only

) for n=3. This again underlines the nonuniversality of the

2. a relaxation deviations. Note that this difference might not be due to

A description of thea process for the mean-squared- asymptotic corrections in the sense discussed in this paper,
displacement dynamics can be derived from E#9). but could come from the mismatch of structural relaxation,
Thereby one obtains the superposition principle governed by the MCT kernehg(t), and the transient dy-
namics, ruled by the times; in Eq. (9).

In Fig. 9 the rescaled mean-squared displacement is com-
pared to thea master functionsr?(t) for various packing
fractions. The time scalg is taken from Eq(2). Note that
Here the master functiodr? is to be calculated from this figure is a harder test of the asymptotics then just testing

or2(t)=or(t/t)). (28
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0.2 ___ expl-g°or(t)/6]

— -+ expl-q°5r(t)/6] {1+a,(OIq°ar(tye] 2}

0 2
log, t

log, U/t

FIG. 9. a-scaling plot of the mean-square displacemari(t), FIG. 10. Test of the Gaussian approximati@0) (dashed lines

taken fjggn Fig. 6, for reduced packing frgqloay,(w_%)/fpc and of the cumulant expansid82) (dot-dashed linesfor the self-
=-10""" n=1,35/7 and 9, vs rescaled time-t/t,. The thick  j iermediate scattering function of the HESIid line at packing

solid line is thea master functionst?(t) calculated from Eq(29).  fraction o= ¢.(1= 10~ ) for the wave numbergy, q;, ds, and
The diamonds mark the early-time bound for #eescaling regime  q, introduced in Fig. 1.
as defined at the end of Sec. Ill C 1. The dashed line shows the

master function corrected according to the analog of(Eg). Leav- In Fig. 10, some tagged-particle correlators as calculated
ing aside thet-independent bracket term, one obtains the dottedfor |¢|=10"""® are compared with the Gaussian approxima-
curves. tion. The latter describes the behavior of the self-

intermediate scattering function of the HSS reasonably for

the time-density superposition principle, since it tests theall considered wave numbers. Coming from small wave
scaling timet,, in addition to the shape of the master func- numbers, at which the Gaussian approximation is asymptoti-
tion. cally exact, the deviations start to appear at the end of the

The leading correction to Eg28) is known to be of order g-relaxation regime, i.e., in the von Schweidler region as
|o|, while the leading corrections to the factorization prop-exemplified forq=gq,. Going to still larger wave numbers
erty are of relative ordex/[o| [18], which explains whyx like g, andqs, the Gaussian approximation also deviates at
scaling works much better thg8 scaling. As we already the beginning of theB-relaxation regime, i.e., in the critical
pointed out in Sec. Ill C 2, the “quality” ofa scaling is  region.
observable independent—as can be seen by comparing Fig. 9 The Gaussian approximation for the critical amplitudes
to Fig. 5—even though first-orde® scaling is much worse can be found by substituting E¢26) into Eq. (30), and
for or?(t) than for®3(t). This is so because the dominant expanding the exponential:
correction to the long-tim@ process is the corrections to the

_g2r?
von Schweidler law(see Fig. 7, which is absorbed into the fa~e s (31a
short-time expansion of the master function. The dashed -
and dotted curves in Fig. 9 show how the deviations from the hg~e 9 "seq?hmsp (31b)
superposition principle for small rescaled timesare ex-
plained by Eq(18). Ki~Kuspt 2 9°husp. (310
V. GAUSSIAN APPROXIMATION — 2
Kq%KMSD+ \/—_q hMSD' (310)
The smallg expansion of the density correlatdrg(t), 1-x

which lead us to the equation of motion for the mean-

squared displacement, can be viewed as the leading term bt€réKusp has been introduced in analogy to £&j7). These
the Gaussian approximatid86—39 approximation results are compared to the various ampli-

tudes in Figs. 1 and 2. In both cases we find a good qualita-
tive description for the amplitudes; the Gaussian approxima-

tion even describes the change of signkgf and E;. The

The Gaussian approximation becomes exact for the shor2ussian results fof*¢ and h® are in better quantitative
time dynamics(either ballistic or—as in our case—diffusive 2greement with the exact results than the result&fand
motion) and for the long-time diffusion, and is known to K¢, since the leading smadj-corrections to Eqs(31a and
work quite well for simple liquids such as argon in its normal (31b) are of higher order than those for E431c) and(31d).
state[38]. So in the following we are primarily interested in Obviously the results fod*=1.0 are better than for the
the intermediate time window of the structural-relaxation re-smaller particle wittd®=0.6. For the large particle they even
gime. give good quantitative descriptions for some of the ampli-

DE(t)~e Ao W, (30
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tudes: practically no deviation can be found for the critical

Lamb-Mossbauer factof*® up toq= 15, and the critical am- 09 t 406 ¢ ]
plitude h® is reproduced up tgq=5. 08 | 308

These results also explain the deviations for the dynamics 07 | e<0 .
in Fig. 10: Since the critical amplitud® is overestimated by ) ¢
the Gaussian approximation, the dashed curves relax faster in . 06 1 5
the B-relaxation region. On the glass side, a larg&ideads “gu 05 |
to a largerfs via fS={3°+h%g/(1—\). In the same way 04t
the corresponding figure fad®=0.6 can be inferred from 03|
Fig. 2. oz | 1

01 r 3 6 9 12

VI. NON-GAUSSIAN PARAMETER NN

A. Equation of motion

A cumulant expansion can be used systematically to clas-
sify the deviations of the density correlator from its Gaussian
approximation. The leading contribution to the deviations is
proportional to the non-Gaussian parameGP) a,(t).
One gets

()

P5(t)=e W1+ Fan(t)[g2arX(1)/6]2+0(qP)},
(32

log,t

—3 4 2 27 __ H 4 —/lr
Wh»ere 4“2_5[& (t)/_5r (0711, with 5_r (t?—(|r(t) FIG. 11. Non-Gaussian parametes(t), obtained from Eq.
—r(0)|*) [36-38. Since the mean-quartic displacement (33), for tagged particles of diameted§= 1.0 and 0.6. The labeling
Sr4(t) is proportional to the fourth Taylor coefficient in a is done as in Fig. 3.
smallq expansion ofg(t)=1-g?8r?(t)/3!+q*or(t)/5!
+ ..., one can derive an equation of motion feg from B. Transition scenario
Eqgs.(9) and(19): . ) .
To begin with, some comments concerning the general
2(4)2 ties ofa,(t) might be appropriate. Neitheir2(t) nor
[1+ ay(t)]or=(t) properues ola; g pprop .

a,(t) are correlation functions and, therefore, the known
general properties of positive definite functions lidg(t)

and CDZ(t) need not be valid for these quantities. WAil(t)
=|r(t)—r(0)|? denoting a positive observable, one obtains

t
+ Dgfom<°>(t—t’)[1+ ay(t)]8r3(t")%dt’

ZGDSJI[ZJF m@(t—t')]or2(t’)dt’. (33 Sr2(t)=(A(t)), and thereforesr?(t)=0. Since ®g(t)=1

0 —q26r?(t)/6+0(q*), for completely monotone density cor-
relators one finds- (—d/at)'or?(t)=0 for [=1,2,.... So

Here a further mode-coupling functional for the kernelwithin the structural relaxation windowst,, and for allt,

Mm@ (t) = Fnep(P (), D5(t)) is introduced: for our colloid model defined by Eq$l) and(9), the mean-

squared displacement is an increasing function of time:
1 *fy 2 ofy (dlt) 8r2(t)=0. The inequality(A%)=(A)? implies a,(t)
Fnee f.19) = —J nSci?k,| — + == — | dk. = —2.5. Hence the non-Gaussian parameter is bounded from
below, but it can have either sign. At early times the density
(34 correlator exhibits Gaussian behavior, independent of

i i ) ) whether Newtonian or Brownian dynamics is considered,
For a numerical calculation, integréd4) is expressed by a gnq thereforar,(t—0)=0. The long-time liquid correlators

Riemann sum analogous to B@1). The derivativesifi/dk  describe diffusion, which is a Gaussian process, and thus
and #°fy/ok® are approximated through their numerical o, (t—o)=0. From Egs.(33) and (19) one finds foro<0
equivalents, e.g.gfp/dk=(fy,s—fr_a)/(2A), except for thata,(t—o)=0(1/). Hence in the liquid state,(t) can-
g=0.2 and 0.6, where they are calculated from a small- not be a monotonic function of time. Negatiwg(t) means
extrapolation according to the Gaussian approximation. Fothat the probability for the particle to move very far is sup-
the same reasons as discussed above in connection with Eggessed relative to the one expected for a random-walk pro-
(19), (20), and(21), it is preferable to solve the derived equa- cess. Similarly, the probability for moving far is enhanced if
tion for a,(t) directly rather than to deduce the non- a,(t)>0. In the latter case the cage boundary is more fuzzy
Gaussian parameter as the sneplimit from the numerical than in the former.

results for<b§(t). We have nevertheless checked that the Figure 11 exhibits the evolution of the non-Gaussian pa-
latter procedure can be followed, provided one chooses eametera,(t) upon crossing the bifurcation point for tagged
finer wave-vector grid and a proper largaegularization of  spheres of diametetF= 1.0 andd®*=0.6 in the HSS. For the
integral (10). glass state the curves exhibit arrest for late time§— )
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=fnep= 1+ Fnee(f, 9. For the liquid state ther process For th_e wave vectorqsqlz,_where the Gaussian approximg-
manifests itself as a bump of the,-versus-logyt diagram  tion yields a good description of the correlators, the addition
starting with an increase above the platéép, reaching of the leading-cumulant correction proportionaldg(t) im-

. . - . proves the fit seriously. However, for larger wave vectors the
some maX|mum,_and then dec_rg,-asmg J.[O zero. The II.qu'(?';ddition of thea, term does not lead to improvements, as is
curves forn=10, i.e., for|e| <10 °, exhibit the superposi-

: e : demonstrated for wave vectgg in Fig. 10. As«, is con-
tion principle: a change of causes a shift of the peak par- siderably larger ford®=0.6 than ford®=1.0, the cumulant

allel to the logarithmic time axis without change of the expansion(32) already breaks down fay neargq.

shape. The first structural relaxation step deals with the ap- Figures 3, 6, and 11 have been shown in order to illustrate
proach toward §gp from below fort>t,. The functions for the theoretical essence of the MCT bifurcation. To avoid

|e|<10™* exhibit the two-step-relaxation scenario for —misleading conclusions from Fig. 11, it might be adequate to
=10 remember the windows accessible by state-of-the-art experi-

For dense normal liquids, is found to be positive, in Mental studies. In molecular-dynamics wéik, 29 a varia-
agreement with molecular dynamics results for liquid argontlon of the diffusivity or ot_her structural relaxation scales.
near its triple point. Our results fas=1.0 andn=2 are of could be detected over a wmc_iow of _about four decade; This

_ corresponds to the curvess 7 in our figures. The dynamical
about the same magnitude as the value 0.13 found for thig;, 4 for structural relaxation explored by van Megen and
Lennard-Jones systeii@8]. Increasing the density toward ynderwood[9] by photon-correlation spectroscopy is also
the critical one implies an increase @f by about a factor 3 about four decades wide. The size of the dynamical window
for both values ofi® studied, but for the smaller spheres the accessible by the neutron-spin-echo instrunibhts smaller
non-Gaussian parameter is about three times larger than ftnan three decades. To focus on resultsdgrwhich might
the larger ones. One concludes that glassy dynamics in tHee relevant for the interpretation of experiments with the
liquid does not lead to dramatic changes of the magnitude dechniques available today, one should ignore the results for
the non-Gaussian parameter, a finding also supported by Fi§=8 in Fig. 11. This restricted set of results exhibits neither
10. the superposition principle nor the two-step relaxation sce-

For long times, and for the smaller sphere for all times, nario._The Ieading-order asymptt_)tic results for the MCT bi-
is positive. This enhanced probability for the particle tofurcatlon dynamics do not describe the MCT results shown

move further is what one would expect as a result of thd? Fig- 11 forn=8, i.e., for |e|>0.001, not even qualita-
building of a backflow pattern in the liquid. However, for tively. But in the following it shall be shown that the results
d*=1.0 the negative plateau valtifsp implies that for suf- can be understood in terms of the next-to-leading asymptotic

ficiently large densities a dip to negative values &os(t) laws.

appears. Fod®*=0.6 the plateau is positive and the dip does _

not exist. The depth of the predicted dip, as opposed to the C. Asymptotic laws

height of the maximum in the regime, is not a structural 1. B relaxation

relaxation phenomenon. Rather, it is caused by the cross over L .
from the short-time transient to the first structural relaxation M order to work out the dynamics in thg-relaxation
step. The mode-coupling approximations are constructed t§findow, we start from the Laplace transform of Eg3):

describe the long-time behavior due to the cage effect. The LI(1+ ay(1))8r2(t)2](s)

theory does not handle short-time collision effects correctly,

and therefore the size of the dip predicted @& 1.0 might =50r%(8)2+sL[ Fnap(P(1), D3(1))]1(s)},

be an artifact due to the insufficiencies of the MCT in a (35)

regime, which it was not made for. An analogous reservation
applies, of course, to the quantitative details of the crossovewnhere the Laplace transform of EGL9) has been used. In-
regimes displayed in Fig. 3 foma(t), and in Fig. 6 for serting the asymptotic expansioi6), (14), and (26) for
8r2(t). The MCT equations do not guarantee the validity of ®4(t), ®g(t), and Sr2(t), respectively, one obtains
the inequalitya,(t)=—2.5. Indeed, fod*=1.0 andp> ¢, B
+0.01 the inequality is violated, and therefore the corre- 2(1) = fneet MneeG(1)
sponding glass curves are not shown in Fig. 11. 2,

The extension of the Gaussian approximation according T hnerl H(1) +KnodG (U + oKepl- - (36)
to Eq. (32) is illustrated by the dash-dotted lines in Fig. 10. Here the amplitudes are given by

hnep= Fuee N, 59+ FRep( 4, 0°), (378

h
Knep=[Fuaelh,h®) + FigphK, £56) + FRae( €, h*K®) 1 et NLSD(]-_ M[2r2hnee— hwso(1+ fnee) 1/hnge, (370)

SC

? I nerl 4159 K fsc € hSKS husp 2
Knep™ T"‘frc\lep(h'(,f )+ Freel F6,h°K®) hngpt rT[hMSD(l+fNGP)_erchNGP]/hNGP- (379

SC
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ring for times neat_ where the liquidB correlator exhibits
0.9 a zero,G(t,)=0(t, =0.704,, for the HSS. The correction
0.8 is given byhygd H(t, )+ oKygp]. For the previously dis-
0.7 cussed examples the two terms in the brackets partly can-
0.6 celed each other, while far,(t) they add up. As a result this
2 05 shift is about an order of magnitude larger than in the ex-
S amples studied in Figs. 4 and 7, or in the examples consid-
04 F ered in Ref[18]. This shift is responsible for the fact that for
0.3 n=9 the Ileading-order asymptotic result for
0.2 a,(t)(d°=1) (dashed lines in the lower panel of Fig.)1fas
0.1 a smaller range of validity than the corresponding result for
the mean-square displaceméRtg. 7) even thoughKycH
<|Kmspol . Of course, this does not contradict the idea that
03 the amplitudeK asymptotically determines the range of va-
02} lidity of the leading-order result, because, asymptotically
= 01} close to the critical point, the shift becomes irrelevant. Thus
300 the leading-order range of validity far,(t)(ds=1) will fi-
nally overtake that fodr?(t) aso—0.
01 One can substitute expansiof6) and(36) into Eq.(32)
0.2 in order to obtain the amplitudes in E¢l4). The result

extends the Gaussian approximati@d) for these quantities,
so that the first cumulant is taken care of. The result im-
10g,t proves the Gaussian approximation §peqy. However, for
large wave vectors the extended approximation is worse than
FIG. 12. B-relaxation behavior of the non-Gaussian param-the Gaussian one, which is shown in Figs. 1 and 2 by the full

eter ay(t) (full lines) taken forn=9 from Fig. 11. The dashed [ines. Therefore the described extension is not worthwhile.
and dot-dashed lines, respectively, are the leading- and next-

-2 0 2 4 6 8

to-leading-order asymptotic expansior(36). The critical 2.« relaxation
amplltudes dS: 10 fEGP: _00445, hNGP: - 112, KNGP i i ) .
=0543, and Rygp=—2.98; d°=0.6: fSep=0.891, hyep To explore the asymptotic behavior in therelaxation

— _1.37, Kyep=3.61, andRee— —9.85) were calculated from rgglon, the non-Gaussian parameter is plotted versus rescaled

Egs.(37). The symbols indicate the range of validity of the leading ime t=t/t in Fig. 13. Comparing the results fal*=1.0
(¢) and the next-to-leadingX) order as defined at the end of Sec. With the corresponding ones for the mean-squared displace-
Il C 1—the first-order range of validity indicated in the lower ment in Fig. 9, one notices that one has to choose a consid-
panel is due to an "accidental” intersection of curves. erably smaller separatiofr| for a,(t) than for 8r2(t) to

find comparable agreement with therelaxation scaling
The analytic results are compared with the numerical soluiy  For n=5 and T=1 Sr2(t) agrees with the

tions forn=29 in Fig. 12. Because of the large negative valueg,nerposition-principle asymptote within the accuracy of the
of hyep, the leading order qualitatively accounts for the drawing in Fig. 9, while the corresponding result fes de-

steep rise ol in the B-relaxation region. This is & major jates seriously from the asymptote. The mean-squared dis-
reason for the absence of a plateau even though the reducgfcement is dominated by the diffusion limit, i.e., Gaussian

Eacklglgs Jr:l;tlf;?llzl v:vr? Ot?é ;sns?tifnrzalI!Irﬁthe ilr?rt%z S:::SOf behavior fort>20. Such contribution is absent in,, and
NGP P y 9 cP 9 therefore then=>5 curve in Fig. 13 magnifies the small de-

'S much more suppregsed below the plateau véjug, thgn' viations from Gaussian dynamics, which for the-5 curve
shown in Fig. 7 forér“(t). There are two further peculiari- | . ~
in Fig. 9 start to be visible only fot<0.3.

ties hidden in Eqs(37), which render the discussion of Fig. : ) X .
Figures 13 and 9 are seemingly in contradiction to the

12 different from those considered so far for other examples.

The a process for the density correlators and for the meanStatément thai scaling should work equally well for differ-

squared displacement deals with monotonic functions. IfgNt quantities(see Sec. IIIC 2 However, as mentioned

those cases the leading corrections to the von Schweidler la@Pove, the non-Gaussian parameter for the packing fractions

influence the details but not the general trend of the funcshown is special in the sense that the corrections for small
tions. The positive slope ofr,(t) in the leading-order contain an important shift term, which stems from the term
B-relaxation regime, however, has to change to a negativé®! brackets in the short-time expansion of teescaling cor-
one in the latex-relaxation regime since th@z(t)-versust. rection (18) In Flg 13 this flndlng is illustrated for the
curve eventually has to decrease to zero. Therefore theurves with the labeh=9. For even smallefo| this shift
a,(t)-versus-logst diagram exhibits a bump. The next-to- becomes irrelevant, thus resolving the paradox.

leading asymptotic formul&36), as opposed to the leading-

order one, can reproduce at least qualitatively thi_s new fe_a- VIl. CONCLUSIONS

ture of the diagram as shown by the dot-dashed lines in Fig.

12. The second difference concerns the remarkable parallel In this paper the MCT results for the structural relaxation
shift of the solution relative to the leading asymptote occur-of the mean-squared displacemeint(t) and non-Gaussian
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The results, in particular those for the spectra, can therefore
be inferred from that earlier work, using the amplitudes from
Figs. 1 and 2. Inclusion of the calculated correction terms
often extends the range of validity of the asymptotic formu-
las seriously. Therefore it is advisable to fit the initial part of
the « process by the von Schweidler expansion including the

12" term, as was done recently by Sciortieoal. [25] in
their analysis of simulation data for supercooled water.
These authors noticed, in particular, that the leading correc-
tion term to Eq.(4) was smallest neag;. This is in qualita-
tive agreement with Fig. 4, even though there isanpriori
reason to expect our hard-sphere-system results to be rel-
evant for an explanation of the details of water.

Figure 7 implies that thér ?(t)-versus-loggt diagram ex-
hibits only a small window for von Schweidler’'s law, and
that the window for the analytic description is extended sig-

nificantly by inclusion of thet?® correction term. It is also

predicted that the critical decay law cannot be identified for

reduced packing fractionke|=0.001. These findings are

similar to what was reported in Refl1] for the simulation

. . . . . . results for a binary Lennard-Jones mixture.

4 -3 -2 -1 0 1 In agreement with photon-correlation-spectroscopy results
log, tt; for a hard-sphere colloif22], one infers from Fig. 10, and

from the lower panel of Fig. 11, that the Gaussian approxi-

wen om Fig, 11 1ot e pcing hacton (s g1, oS o oL O TSPt sy, T T

=*10"%, n=1357 and 9, vs rescaled tirhe-t/t; . The thick & o vis o critical decay law, whiled(t)=exp

solid line is thea master functiorw,(t). The dashed line shows the [—q2ar2(t)/6] does show this leading asymptotic resii
master function corrected according to the analog of(Eg§). Leav- (3)] for q~qs (see Fig. 4 The StrOﬂg’[iza corrections tlo
3 . d

ing aside thet-independent bracket term, one obtains the dotted5r2(t)/6~r2 —hyso(to/t)® nearly cancel those coming
SC

curves. from the expansion of exp-g?&r3(t)/6]; the relevant correc-

parametera,(t) were discussed for the hard-sphere systemtion amplitudeKysp for ar*(t) is therefore larger than that

More generally, we studied the generating function of thesdor 3(1). i . )
quantities, viz. the incoherent intermediate scattering func- The test of MCT against molecular-dynamics-simulation
tion or tagged-particle correlatabg(t). The work is moti- results by Kob and Andersgfi1,39,4Q gives strong support
vated by the distinguished role of these quantities for thd®f the theory. This can be appreciated even more if one
interpretation of spectroscopic data and molecular-dynamicSOnsiders the comparisons of first-principles MCT calcula-
simulations of simple glass forming liquids. The essence ofions of the critical fo_rm factors, critical amplitudes, and ex-
the MCT bifurcation scenario for the evolution of structural POnent parameter with the daftal]. The authors also con-
relaxation is contained in the leading asymptotic laws whicHirmed the power-law singularity for the-relaxation scales
deal with the two scaling laws reviewed in Sec. Il. Most of 7| T—T| 7 with the predicted connection between the ex-
the tests of MCT published so far focused on an assessmeRpnenty and the von Schweidler expone’meq. (2)]. How-
of these universal results. The outcome of this paper demorever, they obtained the resit=|T—T|” for the diffusiv-
strates, in a drastic manner, that the range of validity of théty, with y’ <1y, in contradiction to thex-scale universality.
mentioned asymptotic laws is not universal, but rather deThis observation underlines in particular that the predicted
pends on the quantity considered. This range of validity carmr—scale coupling is not a triviality. Figure 8 demonstrates
be determined by working out the laws for the leading cor-that the corrections to the leading asymptotic law for the
rections. Thereby formulas for a refined data analysis ardiffusivity of a smaller sphere are larger than the ones for the
obtained. There are quantities suchaggt), which are not a-relaxation scale for a representative intermediate wave
described at all within the presently accessible dynamicavector ;. But our finding for the corrections to the hard-
window by the leading asymptotic result. In this case thesphere-system asymptotics is too small to explain the re-
laws, including the leading-order corrections, are necessargorted results for the cited mixture. The MCT prediction for
for a qualitative understanding. the universala scales for the HSS7,x[|¢— @g|/@c]™%®
From Fig. 4 one infers that it is relatively easy to extracte1/D, was confirmed in a recent analysis by van Megen
von Schweidler's law for the relaxation at the structure-et al. [22] of the diffusivity D and the tagged-particle-
factor peak positiom;, while it is more difficult to identify  correlatora scaler, for a hard-sphere colloid.
this leading asymptotic lawWEq. (4)] for the larger wave The results fora,(t) in the upper panel of Fig. 11 are
vectorqs. The behavior ofb(t) for the intermediate wave- unusual if compared to the corresponding ones for represen-
vector range]o—0s is quite similar to what was studied for tative density correlatorsby(t) or <I>§(t). For the curves
the coherent intermediate scattering function in R&8]. with n<8, dealing with the presently in experiments or

FIG. 13. a-scaling plot of the non-Gaussian parametg(t),
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simulations accessible parameters and windows, the twan assessment of our results to meadiygs in the glass
MCT scaling laws[Egs. (5) and (8)] cannot be identified. state.

Neither is it possible to recognize the two time frac{&ss. The upper panel of Fig. 11 looks similar to what Kob and
(3) and(4)]. These findings can be understood by analyticalAndersen reported for their results on a binary mix{urg].
formulas only, if the next-to-leading asymptotic results areln particular, we also findy, to be larger for smaller par-
appreciated, as shown in Fig. 12. However, these observdicles; the maximum increases from 1.0 to 1.2ifis de-
tions are not so surprising for the following reasons. The creased from 0.6 to 0.5. The clustering of the,-
process for the correlatob,(t) deals with the monotonic Versus-logst graphs on the critical curve, labeledin Fig.
decay from the platead to zero. This phenomenon was 11, and referred to as a scaling law in REF1], becomes
already described within Maxwell's viscoelastic theory, deal-Petter ford®=0.5 than for the result shown fa°=0.6. Let

ing with exponential decay and Gaussian density fluctuays emphasize that the results found are not universal features

tions. Glassy dynamics deals with deviations from this phe®f the MCT bifurcation dynamics. The apparent scaling is

: e - disturbed ifd® increases above 0.6, and it is predicted to be
nomenological description. However, for the time range s ; Ny .
whered)a(t)<f§°/2, which deals with a major part of the absent fod®=1.0 as is shown in the lower panel of Fig. 11.

s . . It was shown by Kolet al. [42] that thea, peak is pro-
dq(t)-versus-loggt graph, the phenomenological picture re- y,ceq by clusters of particles which move faster than the

mains essentially valid. In this part the ;uperposition Prin-gnes in their neighborhood. Only as few as 5% of all par-
ciple already holds fon=5, as can be inferred from the tjcles are involved in the formation of these clusters. It would
a-scaling analysis in Fig. 5 or from Ref18]. Also, for e very surprising if the MCT, which works with averaged
a,(t) the superposition principle works for the mentioned quantities like ®4(t) and ®3(t), could reproduce such
large times, as shown in Fig. 13. But since there Gaussiagubtlety of the microscopic dynamics. This would hold even
dynamics is nearly validy,(t) is small, and the correspond- more so if speculations on a relation of the cited cluster
ing part of thea,-versus-logqst diagram merely deals with a dynamics to polymer dynamid€3] could be substantiated.
not so interesting feature of the figure. The diagram is domiOn the other hand, the features of the fast clusters identified
nated by the maximum, and this is located near the end of thgo far are not in obvious contradiction to the idea that they
window of von Schweidler's law. Here the corrections areare representative configurations building up backflow pat-
large compared to the leading terms, and the maximum i¢erns. Moreover, the MCT equations for structural relaxation
only poorly approximated fon<5. But Fig. 5 shows that for were originally proposed and tested against experiments for
®(t) then=5 results do not follow ther-scaling master @ treatment of backflow phenomef#&]. Obviously it would
curve fort/t/ <0.2. This too can be inferred from the corre- P& helpful to carry out a first-principles MCT calculation of
sponding scaling plot shown as Fig. 17 in Refg] or from as(t) _for the cited binary mixture along the same lines as
Fig. 9 for 6r(t). In the latter case the deviations from scal- don€ in this paper for the hard-sphere system. Thereby one
ing are judged relative to the underlying elementary backcould clarify whether or not the qualitative agreement be-

groundfg and agc, respectively, and therefore they do not tween the hard-sphere-system results ddrabout 0.6 with

appear as qualitative effects. The non-Gaussian parametH}e simulation results in Ref11] is just an accident.

magnifies a small effect, and therefore its approximation by
asymptotic formulas is judged differently than for the other
functions. Indeed, for the HSS the predicted sizg(t) We cordially thank Herman Cummins, Walter Kob, and
< 0.3 is so small that the effect disappears in the data noisBill van Megen for stimulating discussions and helpful com-
of the measurement on colloifig2]. Let us emphasize that ments on our manuscript. Our work was supported by Ver-
the valuefgp Of the plateau was of importance for the pre- bund project No. BMBF 03G04TUM and DFG Grant No.
ceding discussion. Therefore, it would be of great interest foFu309/2—-1/2.
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